Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental “tuning knobs.” It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.