Dysregulated usage of pre-mRNA splicing sites contributes to the progression of cancer, neurodegenerative diseases, and viral infections. Serine/arginine-rich (SR) proteins play major roles in the splice site recognition and are largely regulated by phosphorylation. This provides an option for the pharmacological correction of aberrant splicing by inhibiting the relevant kinases. Cdc2-like kinases (Clks) and dual specificity tyrosine phosphorylation-regulated kinases (Dyrks) were both reported to phosphorylate numerous SR proteins in vitro and in vivo. In this study, we describe the discovery of new selective dual Clk/Dyrk1A/1B inhibitors, which are able to modulate alternative pre-mRNA splicing of model gene transcripts in cells with submicromolar potencies. The optimization process yielded a dual Clk and Dyrk inhibitor with exceptionally high ligand efficiency. Our results suggested that dual inhibition of both Clk1 and Dyrk1A increased the efficacy of pre-mRNA splicing modulation.
The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform–mediated functions.
In Alzheimer's disease (AD), multiple factors account for the accumulation of neurocellular changes, which may begin several years before symptoms appear. The most important pathogenic brain changes that are contributing to the development of AD are the formation of the cytotoxic β-amyloid aggregates and of the neurofibrillary tangles, which originate from amyloid-β peptides and hyperphosphorylated tau protein, respectively. New therapeutic agents that target both major pathogenic mechanisms may be particularly efficient. In this study, we introduce bis(hydroxyphenyl)-substituted thiophenes as a novel class of selective, dual inhibitors of the tau kinase Dyrk1A and of the amyloid-β aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.