The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.
The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p=0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8 – 8 for delta; 5.6 log10 copies/mL 95% CI 4.8 – 6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4 – 4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9 – 3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.