Site effects observations and mapping on the weathered volcanic formations of Mayotte IslandObservations et cartographie des effets de site sur les formations volcaniques altérées de l'île de Mayotte
<p>Fiber-optic Distributed Acoustic Sensing (DAS) is of critical value for the expansion of seismological networks, particularly in regions that are hard to instrument. The work presented here is part of the 5-year ERC ABYSS project, which aims at building a permanent seafloor observatory to increase our ability to capture low magnitude seismic signals from the subduction fault zone in the DAS data recorded by offshore telecommunication cables along the central coast of Chile.</p><p>In preparation for this project, a first experiment named POST was conducted from October to December 2021 on a submarine fiber-optic cable connecting the city of Conc&#243;n to La Serena. DAS data were recorded continuously for 38 days over a distance of 150 km from Conc&#243;n, constituting more than 36700 virtual sensors sampling at 125 Hz. This experiment provided an opportunity to anticipate what will be recorded over the next 5 years of the project, and to allow us to develop routines that will be applied later for real-time data processing.</p><p>As a first step, we developed an automated routine for generating a preliminary earthquake catalog, comprising various conventional signal processing steps, including data denoising, change-point detection, and separating seismic events from transient instrumental noise making use of the two-dimensional character of the DAS data. Over a span of 38 days (worth 72 TB of data), our pipeline detected more than 900 local, regional, and teleseismic events with local magnitudes down to M<sub>L</sub> < 2 (based on the Centro Sismol&#243;gico Nacional (CSN) public catalog). The size of our catalog, enriched with numerous off-shore events, is a significant improvement over the current CSN catalog, which may aid future studies into the Chilean margin subduction zone seismicity.</p>
<p>Subduction zones host some of the greatest diversity in seismic and aseismic fault slip behaviors, such as recurrent slow slip, non-volcanic tremors and repeating earthquakes, that are large enough to be measurable at the surface. Our understanding of the mechanisms leading to fault rupture, especially the role of aseismic slip is limited by the sparsity of instrumentation near the nucleation zone, which is predominantly located offshore away from permanent onland seismic networks.</p> <p>Fiber-optic Distributed Acoustic Sensing (DAS) offers a new opportunity for long-term seismic observation of off-shore active faults by turning existing fiber-optic seafloor telecom cables into dense arrays of seismic and acoustic sensors. We conducted a one-month long DAS experiment on the northern leg of the Conc&#243;n landing site of the Prat cable belonging to the GTD company. The longitudinal strain rate was recorded every 4m over a 150km-long fiber section at a temporal sampling rate of 125 Hz, which enabled us to measure low magnitude earthquakes and to locate them precisely. The earthquake catalog generated from the DAS data comprises more than 900 seismic events, which greatly extends the existing regional catalog. A preliminary analysis indicates that several seismic sequences are clustered in time and space, which include numerous events that cannot be detected by the onland seismological network. The ABYSS project will deploy this new observation tool continuously over several years, which will offer a new opportunity to better characterize the distribution of the seismicity in time and space, and will provide new constraints to the models of fault behavior during the seismic cycle. Combined with other types of analysis, such as seismic wave velocity changes monitoring at depth, these data will also provide additional constraints on the aseismic deformation of the fault zone.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.