Chronic inhibition of succinate dehydrogenase (SDH) by systemic injection of the selective inhibitor 3nitropropionic acid (3NP) has been used as an animal model for Huntington's disease(HD). However, the mechanisms by which 3NP produces lesions in the striatum are not fully characterized. A quantitative histochemical method was developed to study the level of regional SDH inhibition resulting from intraperitoneal injection of 3NP or chronic intoxication using osmotic pumps. The results showed that (a) 3NP was an irreversible SDH inhibitor in vivo, (b) the level of SDH inhibition in the striatum (the brain region most vulnerable to 3NP) was similar to that observed in other brain regions not affected by the toxin, such as the cerebral cortex, and (c) the neurotoxic threshold of SDH inhibition in the brain was 50-60% of control levels. The present study demonstrates that the selective degeneration in the striatum observed after chronic 3NP administration cannot be ascribed to a preferential inhibition of SDH in this particular brain region. This work also suggests that the partial decrease in the activity of the respiratory chain complex Il-Ill reported in HD patients may be sufficient to induce the selective striatal degeneration observed in this disorder. Key Words: Mitochondria-Huntington's disease-Striatum-Neuronal death-Excitotoxicity-Succinate dehydrogenase.
We showed recently that chronic administration of the mitochondrial inhibitor 3-nitropropionic acid (3NP) in primates produces various dyskinetic movements and dystonic postures associated with selective striatal lesions displaying many similarities with the pathological features of Huntington's disease (HD). In the present study, we examined whether such a toxic treatment could also induce frontal-type deficits similar to those observed in HD patients. Cognitive performances of 3NP-treated and control baboons were compared using the object retrieval detour task (ORDT), a test designed to assess the functional integrity of the frontostriatal pathway in human and nonhuman primates. During the same time, the motor function of each animal was assessed under spontaneous "no drug" conditions, and time-sampled neurological observations were used after apomorphine administration. A significant impairment in the ORDT was observed in the 3NP animals after 3-6 weeks of treatment, occurring in the absence of spontaneous abnormal movements by in the presence of apomorphine-inducible dyskinesias. Prolonged 3NP treatment resulted in the progressive appearance of spontaneous abnormal movements. Histological evaluation of these animals showed selective bilateral caudate-putamen lesions with sparing of the cerebral cortex, notably the prefrontal cortex. The present study demonstrates that chronic 3NP treatment replicates in primates the basic pathophysiological triad of HD, including spontaneous abnormal movements, progressive striatal degeneration, and a frontostriatal syndrome of cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.