Disease transmission by insect vectors will depend on integrated physiological responses to interacting environmental variables. We explored how interactions between temperature and sucrose concentration affected immunity and fecundity, two variables that contribute to vectorial capacity, in Culex pipiens Linnaeus, 1758 mosquitoes. We provided female C. pipiens with either 2% or 20% sucrose and exposed them to low (22 °C), moderate (25 °C), or high (30 °C) temperatures for 8 days. We then measured the strength of the melanization response in one subpopulation of females and the number of eggs laid as a measure of fecundity in another subpopulation. Temperature interacted with diet to weaken immunity under 2% sucrose at 22 and 25 °C. This effect disappeared at 30 °C, suggesting that high temperatures allowed mosquitoes to compensate for the effects of decreased sucrose. Conversely, increasing temperature increased egg production on a diet of 20% sucrose, but heat exposure on a diet of 2% sucrose decreased fecundity. Overall, we suggest that heat exposure requires investment in thermal protection, which may prompt reconfiguration of the immune system and (or) decreased investment in reproduction. Thus, our understanding of the effects of climate change rest on which physiological system we measure and under which combinations of stressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.