Projection neurons destined for the cortical plate are generated sequentially from the proliferative ventricular and subventricular zones (VZ/SVZ) of the pallium. However, the respective contribution of both proliferative zones to the generation of cortical plate neurons is better established in humans and non-human primates than in rodents. We identified Cux2 as a new marker for murine cortical subpopulations and used it to provide new insights to the development of the mouse cortex. Cux2 is an orthologue of the Drosophila cut gene, which encodes a homeodomain protein involved in neuronal specification. During cortical development Cux2 identifies two subpopulations with different spatial origins, migratory behaviours and phenotypic characteristics: (i) a population of interneurons, which invades the pallium from the subpallium; and (ii) a neuronal population produced in the pallium around embryonic day 11.5, which divides in the SVZ and accumulates in the intermediate zone (IZ). Subsequently, Cux2 is a marker of upper cortical layers. Using different molecular markers and Pax6-deficient mice, we provide data that suggest a relationship between the early-determined Cux2-positive neuronal precursors in the SVZ/IZ and upper layer neurons. This suggests that laminar determination of upper cortical layer neurons occurs during the earliest stages of corticogenesis.
Most cortical interneurons are generated in the subpallial ganglionic eminences and migrate tangentially to their final destinations in the neocortex. Within the cortex, interneurons follow mainly stereotype routes in the subventricular zone/intermediate zone (SVZ/IZ) and in the marginal zone. It has been suggested that interactions between invading interneurons and locally generated projection neurons are implicated in the temporal and spatial regulation of the invasion process. However, so far experimental evidence for such interactions is lacking.We show here that the chemokine stromal-derived factor 1 (SDF-1; CXCL12) is expressed in the main invasion route for cortical interneurons in the SVZ/IZ. Most SDF-1-positive cells are proliferating and express the homeodomain transcription factors Cux1 and Cux2. Using MASH-1 mutant mice in concert with the interneuron marker DLX, we exclude that interneurons themselves produce the chemokine in an autocrine manner. We conclude that the SDF-1-expressing cell population represents the precursors of projection neurons during their transition and amplification in the SVZ/IZ. Using mice lacking the SDF-1 receptor CXCR4 or Pax6, we demonstrate that SDF-1 expression in the cortical SVZ/IZ is essential for recognition of this pathway by interneurons. These results represent the first evidence for a molecular interaction between precursors of projection neurons and invading interneurons during corticogenesis.
Many transcription factors, and most prominently among them, homeodomain proteins, are expressed in specific groups of cells in the developing nervous system in patterns that suggest their involvement in neural fate determination. How various aspects of neural identity are controlled by such transcription factors, or sets of them, is still mostly unknown. It has been shown previously that Phox2 is such a homeodomain protein, expressed exclusively in differentiated groups of neurons or their precursors, and that its expression correlated with that of the noradrenaline synthesis enzyme dopamine--hydroxylase. Here we confirm this striking correlation at the single-cell level with the use of an anti-Phox2 antibody. Moreover, we uncover a second, nonmutually exclusive correlative clue to the Phox2 expression pattern: a high proportion of Phox2-expressing cells are involved in, or located in areas involved in, synaptic circuits, i.e., that of the medullary control reflexes of autonomic functions. This suggests that Phox2 could be involved in the establishment of these circuits.
Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140) in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.
Although respiration is vital to the survival of all mammals from the moment of birth, little is known about the genetic factors controlling the prenatal maturation of this physiological process. Here we investigated the role of the Phox2a gene that encodes for a homeodomain protein involved in the generation of noradrenergic A6 neurons in the maturation of the respiratory network. First, comparisons of the respiratory activity of fetuses delivered surgically from heterozygous Phox2a pregnant mice on gestational day 18 showed that the mutants had impaired in vivo ventilation, in vitro respiratory-like activity, and in vitro respiratory responses to central hypoxia and noradrenaline. Second, pharmacological studies on wild-type neonates showed that endogenous noradrenaline released from pontine A6 neurons potentiates rhythmic respiratory activity via ␣1 medullary adrenoceptors. Third, transynaptic tracing experiments in which rabies virus was injected into the diaphragm confirmed that A6 neurons were connected to the neonatal respiratory network. Fourth, blocking the ␣1 adrenoceptors in wild-type dams during late gestation with daily injections of the ␣1 adrenoceptor antagonist prazosin induced in vivo and in vitro neonatal respiratory deficits similar to those observed in Phox2a mutants. These results suggest that noradrenaline, A6 neurons, and the Phox2a gene, which is crucial for the generation of A6 neurons, are essential for development of normal respiratory rhythm in neonatal mice. Metabolic noradrenaline disorders occurring during gestation therefore may induce neonatal respiratory deficits, in agreement with the catecholamine anomalies reported in victims of sudden infant death syndrome.Key words: prenatal maturation of the respiratory network; Phox2a gene; fetal mice; in vivo ventilation; in vitro respiratory activity of brainstem; spinal cord preparations; noradrenaline; A6 neurons
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.