The human papillomavirus type 18 (HPV18) long control region (LCR) harbors transcriptional promoter and enhancer elements. Recombinant plasmids bearing all or part of the HPV18 LCR cloned in enhancer or promoter configuration upstream of the chloramphenicol acetyltransferase (CAT) gene were transfected into human fibroblasts and keratinocytes. Although the HPV18 enhancer can function in the absence of E2 gene products in both fibroblasts and keratinocytes, the promoter activity of the HPV18 LCR is detectable in keratinocytes but not in fibroblasts, suggesting that it is tissue specific. This promoter activity was repressed in human keratinocytes not only by the bovine papillomavirus type 1 E2 gene product but also by the homologous HPV18 E2 gene product. The promoter involved in the HPV18 E2 repression is located within a 230-base-pair domain directly upstream of the E6 open reading frame of the HPV18 LCR and is probably the previously identified E6 promoter. Although one cannot rule out the possibility that this repressing effect is mediated by a truncated form of HPV18 E2 protein, as was previously demonstrated for bovine papillomavirus type 1, a more likely explanation would be that the full-length HPV18 E2 protein behaves as a repressor. Indeed, at the same doses at which it inhibits transcription from the homologous HPV18 LCR, the HPV18 E2 gene product activates transcription from constructs bearing E2-binding palindromes cloned in enhancer configuration upstream of a heterologous promoter. The fact that the homologous HPV18 E2 gene product acts as a transcriptional repressor of the HPV18 LCR suggests a possible explanation for the overexpression of E6 and E7 open reading frames in cervical carcinoma cells and in cell lines derived from them.
Vascular endothelial growth factor (VEGF) is overexpressed in hyperproliferative diseases, such as psoriasis and cancers, which are characterized by increased angiogenesis. Experimentally, VEGF overexpression can be induced by the treatment of cell cultures and biological tissues with phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA). Using normal human keratinocytes in conventional cultures and skin grafted onto nude mice in vivo, we show that retinoids can inhibit TPA-mediated VEGF gene induction at the transcriptional level. Because retinoids are biologically active either by interacting with the nuclear retinoic acid receptors or by interfering with the activator protein 1 (AP1) transcription factor, we studied the effect of the retinoic acid derivative CD 2409, which exhibits strong anti-AP1 activity but does not bind to the known retinoic acid receptors in vitro. The results demonstrate that the inhibition of VEGF expression by retinoids only depends on their anti-AP1 activity and does not require gene transactivation via retinoic acid response elements. Because the VEGF promoter contains four potential AP1 binding sites, we used different promoter constructs to identify the functional site responsible for TPA induction and retinoid inhibition. This site turned out to be localized at position ؊621 of the 5 flanking region of the VEGF gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.