BackgroundOrodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders.MethodsWe designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption.ResultsWe discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases.ConclusionsWe have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease.Trial registration numbersNCT01746121 and NCT02397824.
The hypohidrotic ectodermal dysplasias (HED) belong to a large and heterogeneous nosological group of polymalfomative syndromes characterized by dystrophy or agenesis of ectodermal derivatives. Molecular etiologies of HED consist of mutations of the genes involved in the Ectodysplasin (EDA)-NF-kappaB pathway. Besides the classic ectodermal signs, craniofacial and bone manifestations are associated with the phenotypic spectrum of HED. The dental phenotype of HED consists of various degrees of oligodontia with other dental abnormalities, and these are important in the early diagnosis and identification of persons with HED. Phenotypic dental markers of heterozygous females for EDA gene mutation-moderate oligodontia, conical incisors, and delayed dental eruption-are important for individuals giving reliable genetic counseling. Some dental ageneses observed in HED are also encountered in non-syndromic oligodontia. These clinical similarities may reflect possible interactions between homeobox genes implicated in early steps of odontogenesis and the Ectodysplasin (EDA)-NF-kappaB pathway. Craniofacial dysmorphologies and bone structural anomalies are also associated with the phenotypic spectrum of persons with HED patients. The corresponding molecular mechanisms involve altered interactions between the EDA-NF-kappaB pathway and signaling molecules essential in skeletogenic neural crest cell differentiation, migration, and osteoclastic differentiation. Regarding oral treatment of persons with HED, implant-supported prostheses are used with a relatively high implant survival rate. Recently, groundbreaking experimental approaches with recombinant EDA or transgenesis of EDA-A1 were developed from the perspective of systemic treatment and appear very promising. All these clinical observations and molecular data allow for the specification of the craniofacial phenotypic spectrum in HED and provide a better understanding of the mechanisms involved in the pathogenesis of this syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.