How do we empathize with others? A mechanism according to which action representation modulates emotional activity may provide an essential functional architecture for empathy. The superior temporal and inferior frontal cortices are critical areas for action representation and are connected to the limbic system via the insula. Thus, the insula may be a critical relay from action representation to emotion. We used functional MRI while subjects were either imitating or simply observing emotional facial expressions. Imitation and observation of emotions activated a largely similar network of brain areas. Within this network, there was greater activity during imitation, compared with observation of emotions, in premotor areas including the inferior frontal cortex, as well as in the superior temporal cortex, insula, and amygdala. We understand what others feel by a mechanism of action representation that allows empathy and modulates our emotional content. The insula plays a fundamental role in this mechanism.
Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. ''N o creature not endowed with divinatory power can perform an act voluntarily for the first time'' (1). Voluntary movements must be preceded, as William James wrote, by ''random, automatic, or reflex movements.'' These movements leave a trace formed by kinesthetic impressions and by their outcome as perceived by the agent of the action [''remote effects'' (1)]. The idea of an internal sensory copy of the executed action that in modern time has been reproposed in computer science [forward internal models (2-4)] and in psychology [ideomotor theory of learning (5, 6)] has far reaching consequences for understanding imitation. If the motor representation of a voluntary action indeed evokes an internal sensory representation of its consequences, imitation can be achieved by a mechanism relating this representation with the visual representation of the movement to be imitated and a subsequent re-activation of the relevant motor representations.Evidence that the observed actions are mapped directly onto neurons coding actions has been provided recently by Rizzolatti and coworkers. They demonstrated that in the ventral premotor cortex [area F5 (7, 8)] and in the parietal area PF k of the monkey there are neurons that discharge both when the monkey makes a specific hand action and when it observes another individual making a similar action (mirror neurons). The issue, however, of whether there is a visual area that codes the observed actions as well as the remote effects of voluntary movements is open. Given its reciprocal connections with parietal area PF (and indirectly with F5), the superior temporal sulcus (STS) region, a cortical sector in which there is a large number of neur...
Behavioral studies reveal that imitation performance and the motor system are strongly influenced by the goal of the action to be performed. We used functional magnetic resonance imaging (fMRI) to assess the effect of explicit action goals on neural activity during imitation. Subjects imitated index finger movements in the absence and presence of visible goals (red dots that were reached for by the finger movement). Finger movements were either ipsilateral or contralateral. The pars opercularis of the inferior frontal gyrus showed increased blood oxygen level-dependent fMRI signal bilaterally for imitation of goal-oriented actions, compared with imitation of actions with no explicit goal. In addition, bilateral dorsal premotor areas demonstrated greater activity for goal-oriented actions, for contralateral movements and an interaction effect such that goal-oriented contralateral movements yielded the greatest activity. These results support the hypothesis that areas relevant to motor preparation and motor execution are tuned to coding goal-oriented actions and are in keeping with single-cell recordings revealing that neurons in area F5 of the monkey brain represent goal-directed aspects of actions.
. Modulation of cortical activity during different imitative behaviors. J Neurophysiol 89: 460 -471, 2003; 10.1152/jn.00248.2002. Imitation is a basic form of motor learning during development. We have a preference to imitate the actions of others as if looking in a mirror (specular imitation: i.e., when the actor moves the left hand, the imitator moves the right hand) rather than with the anatomically congruent hand (anatomic imitation: i.e., actor and imitator both moving the right hand). We hypothesized that this preference reflects changes in activity in previously described frontoparietal cortical areas involved in directly matching observed and executed actions (mirror neuron areas). We used functional magnetic resonance imaging to study brain activity in normal volunteers imitating left and right hand movements with their right hand. Bilateral inferior frontal and right posterior parietal cortex were more active during specular imitation compared with anatomic imitation and control motor tasks. Furthermore this same pattern of activity was also observed in the rostral part of the supplementary motor area (SMAproper) of the right hemisphere. These findings suggest that the degree of involvement of frontoparietal mirror areas in imitation depends on the nature of the imitative behavior, ruling out a linguistic mediation of these areas in imitation. Moreover, activity in the SMA appears to be tightly coupled to frontoparietal mirror areas when subjects copy the actions of others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.