SummaryEntamoeba histolytica is the human parasite responsible of amoebiasis, during which highly motile trophozoites invade the intestinal epithelium leading to amoebic colitis, and disseminate via the blood circulation causing liver abscesses. The invasive process, central to the pathogenesis, is known to be driven by parasites motility. To investigate molecules responsible for in vivo motion, we performed a high resolution dynamic imaging analysis using two-photon laser scanning microscopy. Image analysis of the parasites during invasion of Caco-2 cell monolayers, an enterocyte-like model, and hamster liver shows that E. histolytica undergoes non-Brownian motion. However, studies of movements of parasite strains dominant negative for myosin II, a central component of the cytoskeleton, and for Gal-GalNAc lectin, a major adhesion molecule, indicate that myosin II is essential for E. histolytica intercellular motility through intestinal cell monolayers and for its motility in liver. In contrast, the Gal-GalNAc lectin exclusively triggers invasion of the liver. These observations are in agreement with emerging studies that highlight marked differences in the way that cells migrate in vitro in two dimensions versus in vivo in three dimensions. The approach that we have developed should be powerful to identify adhesive complexes required for in vivo cell migration in normal and pathogenic situations and may, thereby, lead to new therapeutic drug, for pathologies based on cell motility and adhesion.
The protozoan parasite Entamoeba histolytica colonizes the human large bowel. Invasion of the intestinal epithelium causes amoebic colitis and opens the route for amoebic liver abscesses. The parasite relies on its dynamic actomyosin cytoskeleton and on surface adhesion molecules for dissemination in the human tissues. Here we show that the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin clusters in focal structures localized in the region of E. histolytica that contacts monolayers of enterocytes. Disruption of myosin II activity impairs the formation of these structures and renders the trophozoites avirulent for liver abscess development. Production of the cytoplasmic domain of the E. histolytica Gal/GalNAc lectin in engineered trophozoites causes reduced adhesion to enterocytes. Intraportal delivery of these parasites to the liver leads to the formation of a large number of small abscesses with disorganized morphology that are localized in the vicinity of blood vessels. The data support a model for invasion in which parasite motility is essential for establishment of infectious foci, while the adhesion to host cells modulates the distribution of trophozoites in the liver and their capacity to migrate in the hepatic tissue.
The protozoan parasite Entamoeba histolytica is the causative agent of amoebiasis, a human disease characterized by dysentery and liver abscess. The physiopathology of hepatic lesions can be satisfactorily reproduced in the hamster animal model by the administration of trophozoites through the portal vein route. Hamsters were infected with radioactively labeled amoebas for analysis of liver abscess establishment and progression. The radioimaging of material from parasite origin and quantification of the number inflammation foci, with or without amoebas, described here provides the first detailed assessment of trophozoite survival and death during liver infection by E. histolytica. The massive death of trophozoites observed in the first hours postinfection correlates with the presence of a majority of inflammatory foci without parasites. A critical point for success of infection is reached after 12 h when the lowest number of trophozoites is observed. The process then enters a commitment phase during which parasites multiply and the size of the infection foci increases fast. The liver shows extensive areas of dead hepatocytes that are surrounded by a peripheral layer of parasites facing inflammatory cells leading to acute inflammation. Our results show that the host response promotes massive parasite death but also suggest also that this is a major contributor to the establishment of inflammation during development of liver abscess.Amoebiasis is a widespread human parasitic disease caused by the protozoan Entamoeba histolytica. The two major clinical manifestations of E. histolytica infection are amoebic colitis and liver amoebic abscess. Yearly, 50 million people develop intestinal amoebiasis and it is estimated that 10% of individuals with amebic colitis will develop an amebic liver abscess. Amoeba infection causes 100,000 deaths per year, ranking, second after malaria, among the most deadly human parasitic diseases caused by a protozoan (6).During invasive amoebiasis, highly motile trophozoites invade the intestinal epithelium, causing extensive tissue damage characterized by acute inflammation and ulceration with necrosis and hemorrhage. In contrast to intestinal amoebiasis, invasion of the liver is characterized by the presence of nonmotile E. histolytica trophozoites that cause an acute inflammatory reaction. Well-individualized infection foci contain mostly dead hepatocytes, polymorphonuclear leukocytes (PMN), macrophages, and parasites. Differences in pathology between amoebic colitis and amoebic liver abscess (ALA) likely result from a variation of the E. histolytica virulence repertoire in the two organs and from different responses of these organs to amoeba infection (11). Understanding the physiopathology of amoebiasis thus requires the development of new experimental strategies that take into account the multifactorial cross talk between the amoeba and the host cells during invasion of a specific human organ.Our current knowledge of ALA development is essentially derived from studies with rodent mode...
SUMMARY Amoebiasis by Entamoeba histolytica is a major public health problem in developing countries and leads to several thousand deaths per year. The parasite invades the intestine (provoking diarrhea and dysentery) and the liver, where it forms abscesses (amoebic liver abscesses [ALAs]). The liver is the organ responsible for filtering blood coming from the intestinal tract, a task that implies a particular structure and immune features. Amoebae use the portal route and break through the sinusoidal endothelial barrier to reach the hepatic parenchyma. When faced with systemic and cell-mediated defenses, trophozoites adapt to their new environment and modulate host responses, leading to parasite survival and the formation of inflammatory foci. Cytopathogenic effects and the onset of inflammation may be caused by diffusible products originating from parasites and/or immune cells either by their secretion or by their release after cell death. Liver infection thus results from the interplay between E. histolytica and hepatic cells. Despite its importance in terms of public health burden, the lack of integrated data on ALA genesis means that we have only an incomplete description of the initiation and development of hepatic amoebiasis. Here, we review the main steps of ALA development as well as the responses triggered in both the host and the parasite. Transcriptome studies highlighted parasite factors involved in adherence to human cells, cytopathogenic effects, and adaptative and stress responses. An understanding of their role in ALA development will help to unravel the host-pathogen interactions and their evolution throughout the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.