Seagrasses are globally recognized for their contribution to blue carbon sequestration. However, accurate quantification of their carbon storage capacity remains uncertain due, in part, to an incomplete inventory of global seagrass extent and assessment of its temporal variability. Furthermore, seagrasses are undergoing significant decline globally, which highlights the urgent need to develop change detection techniques applicable to both the scale of loss and the spatial complexity of coastal environments. This study applied a deep learning algorithm to a 30-year time series of Landsat 5 through 8 imagery to quantify seagrass extent, leaf area index (LAI), and belowground organic carbon (BGC) in St. Joseph Bay, Florida, between 1990 and 2020. Consistent with previous field-based observations regarding stability of seagrass extent throughout St. Joseph Bay, there was no temporal trend in seagrass extent (23 ± 3 km2, τ = 0.09, p = 0.59, n = 31), LAI (1.6 ± 0.2, τ = -0.13, p = 0.42, n = 31), or BGC (165 ± 19 g C m−2, τ = - 0.01, p = 0.1, n = 31) over the 30-year study period. There were, however, six brief declines in seagrass extent between the years 2004 and 2019 following tropical cyclones, from which seagrasses recovered rapidly. Fine-scale interannual variability in seagrass extent, LAI, and BGC was unrelated to sea surface temperature or to climate variability associated with the El Niño-Southern Oscillation or the North Atlantic Oscillation. Although our temporal assessment showed that seagrass and its belowground carbon were stable in St. Joseph Bay from 1990 to 2020, forecasts suggest that environmental and climate pressures are ongoing, which highlights the importance of the method and time series presented here as a valuable tool to quantify decadal-scale variability in seagrass dynamics. Perhaps more importantly, our results can serve as a baseline against which we can monitor future change in seagrass communities and their blue carbon.
Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for an aquatic target as WorldView-3 was primarily designed as a land sensor. At-sensor radiance measured by six of WorldView-3ʻs eight spectral bands exhibited banding, more specifically referred to as non-uniformity, at a width corresponding to the multispectral detector sub-arrays that comprise the WorldView-3 focal plane. At-sensor radiance measured by the remaining two spectral bands, red and near-infrared (NIR) #1, exhibited striping. Striping in these spectral bands can be attributed to their time delay integration (TDI) settings at the time of image acquisition, which were optimized for land. The impact of vertical striping on a spectral index leveraging the red, red edge, and NIR spectral bands—referred to here as the NIR maximum chlorophyll index (MCI NIR )—was investigated. Temporally similar imagery from the European Space Agencyʻs Sentinel-3 and Sentinel-2 satellites were used as baseline references of expected chlorophyll values across Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 imagery showed striping. Striping was highly prominent in the MCI NIR product generated using WorldView-3 imagery, as noise in the at-sensor radiance exceeded any signal of chlorophyll in the image. Adjusting the image acquisition parameters for future tasking of WorldView-3 or the functionally similar WorldView-2 satellite may alleviate these artefacts. To test this, an additional WorldView-3 image was acquired at Lake Okeechobee, FL, on 26 May 2021 in which the TDI settings and scan line rate were adjusted to improve the signal-to-noise ratio. While some evidence of non-uniformity remained, striping was no longer noticeable in the MCI NIR product. Future image tasking over aquatic targets should employ these updated image acquisition parameters. Since the red and NIR #1 spectral bands are critical for inland and coastal water applications, archived images not collected using these updated settings may be limited in their potential for analysis of aquatic variables that require these two spectral bands to derive
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.