The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% Ϯ 15.6%. PV genomes covering Ͼ99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance.
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in the Democratic Republic of Congo (DR Congo). Moreover, circulating vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks in DR Congo from 2004 to 2018 have been characterized so far only by the sequences of their VP1 capsid coding gene. This study was carried to i) investigate the circulation and genetic diversity of NPEV and polio vaccine isolates recovered from healthy children and Acute Flaccid Paralysis (AFP) patients, ii) evaluate the occurrence of genetic recombination among EVs belonging to the Enterovirus C species (including PVs) and iii) identify the virological factors favoring multiple emergences of cVDPVs in DR Congo. The biological material considered in this study included i) a collection of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between 2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR Congo. Studied virus isolates were sequenced in four distinct sub-genomic regions 5’-UTR, VP1, 2C ATPase and 3D pol . Resulting sequences were compared through comparative phylogenetic analyses. Virus isolation showed that 19.1% (63/330) healthy children were infected by EVs including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs. Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP patients whereas 27.5% of the 69 NPEV isolates typed in healthy children belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69). Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing exogenous sequences in at least one of the targeted non-structural regions of their genomes: 5’UTR, 2C ATPase and 3D pol . Some of these non-vaccine sequences of the recombinant cVDPVs were strikingly related to homologous sequences from co-circulating CV-A17 and A20 in the 2C ATPase region as well as to those from co-circulating CV-A13, A17 and A20 in the 3D pol region. This study provided the first evidence uncovering CV-A20 strains as major recombination partners of PVs. High quality AFP surveillance, sensitive environmental surveillance and efficient vaccination activities remain essential to ensure timely detection and efficient response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for any epidemiological setting where high frequency and genetic diversity of Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the emergence of virulent recombinant cVDPVs.
Background The re-emergence of yellow fever poses a serious public health risk to unimmunized communities in the tropical regions of Africa and South America and unvaccinated travelers visiting these regions. This risk is further accentuated by the likely spread of the virus to areas with potential for yellow fever transmission such as in Asia, Europe, and North America. To mitigate this risk, surveillance of yellow fever is pivotal. We performed an analysis of laboratory-based surveillance of yellow fever suspected cases in Cameroon during 2010–2020 to characterize the epidemiology of yellow fever cases and define health districts at high risk. Method We reviewed IgM capture ELISA and plaque reduction neutralization test (PRNT) test results of all suspected yellow fever patients analyzed at Centre Pasteur of Cameroon, the national yellow fever testing laboratory, during 2010–2020. Results Of the 20,261 yellow fever suspected patient’s samples that were tested, yellow fever IgM antibodies were detected in 360 patients representing an annual average of 33 cases/year. A major increase in YF IgM positive cases was observed in 2015 and in 2016 followed by a decrease in cases to below pre-2015 levels. The majority of the 2015 cases occurred during the latter part of the year while those in 2016, occurred between February and May. This trend may be due to an increase in transmission that began in late 2015 and continued to early 2016 or due to two separate transmission events. In 2016, where the highest number of cases were detected, 60 health districts in the 10 regions of Cameroon were affected with the Littoral, Northwest and, Far North regions being the most affected. After 2016, the number of detected yellow fever IgM positive cases dropped. Conclusion Our study shows that yellow fever transmission continues to persist and seems to be occurring all over Cameroon with all 10 regions under surveillance reporting a case. Preventive measures such as mass vaccination campaigns and routine childhood immunizations are urgently needed to increase population immunity. The diagnostic limitations in our analysis highlight the need to strengthen laboratory capacity and improve case investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.