Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic impacts show that seafloor disturbance by benthic fishing is mainly attributable to trawling in the Gulf of Lion and to long lines where rocky substrates are present. The bauxite residue (red mud) expelled in the Cassidaigne canyon was seen to prevent fauna from settling at the bottom of the canyon and it covered much of the flanks. Litter was present in all of the canyons and especially in considerable quantities in the Ligurian Sea, where the heads of the canyons are closer to the coast. Three Marine Protected Areas and one fishing area with restricted access have recently been established and should permit the preservation of these deep ecosystems.
A giant pockmark colonised by dense cold-seep assemblages near 3160 m depth along the Congo-Angola margin has been surveyed by the ROV Victor 6000. The quantitative distribution of chemosynthetic communities was mapped along the dive tracks from a video study using GIS and image mosaicking. Several types of faunal assemblages, either dominated by bivalves of the families Mytilidae (Bathymodiolus sp.) or Vesicomyidae (Calyptogena sp., 'Vesicomya' aff. chuni), or by Siboglinidae polychaetes (Escarpia southwardae) were mapped over the 800-m diameter pockmark area and sampled for fauna, water and sediment. The isotopic analyses (d 13 C) of tissues from symbiont-bearing species were within the range typical of nutrition via symbiosis using methane for mussels and sulphide for vesicomyids and siboglinids. The living chemosynthetic communities were distributed on a SW-NE axis, corresponding to the expression at the sediment surface of a main buried channel providing fluids to the pockmark. The site was characterised by a more active central part in a depression with abundant carbonate concretions where high-density clusters of siboglinids and mytilids dominate. Large fields of dead and live vesicomyids with a lower mean density were observed in the external areas. The mean coverage of each of the three symbiotic taxa in these two contrasted areas was estimated from mosaic analysis and was up to 30% in the central area dominated by E. southwardae bushes (23%). Symbiont-bearing species distribution was consistent with methane concentrations in seawater that were generally higher in mytilid beds than in the vicinity of siboglinids and vesicomyids. A Principal Component Analysis performed on environmental factors at the ten sampling sites revealed that 37% of the observed variance in the distribution of symbiont-bearing species may be explained by variation in both methane and oxygen concentrations, while a Canonical Redundancy Analysis selected methane concentration as the only variable which explains symbiont-bearing species densities. This spatial distribution of chemosynthetic species at the pockmark scale may reflect temporal patterns of succession of both substrate and fauna, and may be related to different individual pockmarks visible on the microbathymetry mapped using ROV data.
Knowledge on quantitative faunal distribution patterns of hydrothermal communities in slow-spreading vent fields is particularly scarce, despite the importance of these ridges in the global mid-ocean system. This study assessed the composition, abundance and diversity of 12 benthic faunal assemblages from various locations on the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) and investigated the role of key environmental conditions (temperature, total dissolved iron (TdFe), sulfide (TdS), copper (TdCu) and pH) on the distribution of macro-and meiofaunal species at small spatial scales (< 1 m). There were differences in macro-and meiofaunal community structure between the different sampling locations, separating the hydrothermal community of the Eiffel Tower edifice into three types of microhabitats: (1) cold microhabitats characterized by low temperatures (<6 °C), high TdCu (up to 2.4±1.37 µmol l−1), high pH (up to 7.34±0.13) but low TdS concentrations (<6.98±5.01 µmol l−1); (2) warm microhabitats characterized by warmer temperatures (>6 °C), low pH (<6.5) and high TdS/TdFe concentrations (>12.8 µmol l−1/>1.1 µmol l−1 respectively); and (3) a third microhabitat characterized by intermediate abiotic conditions. Environmental conditions showed more variation in the warm microhabitats than in the cold microhabitats. In terms of fauna, the warm microhabitats had lower macro-and meiofaunal densities, and lower richness and Shannon diversity than the cold microhabitats. Six macrofaunal species (Branchipolynoe seepensis, Amathys lutzi, Bathymodiolus azoricus, Lepetodrilus fucensis, Protolira valvatoides and Chorocaris chacei) and three meiofaunal taxa (Paracanthonchus, Cephalochaetosoma and Microlaimus) were identified as being significant indicator species/taxa of particular microhabitats. Our results also highlight very specific niche separation for copepod juveniles among the different hydrothermal microhabitats. Some sampling units showed Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. unique faunal composition and increased beta diversity on the Eiffel Tower edifice. Contrary to what was expected, the highest beta diversity was not associated with a particular microhabitat type, but rather with location on the central part of the edifice where other structuring factors may predominate.
International audienceTrophic relationships in Bathymodiolus azoricus mussel bed communities on the Tour Eiffel hydrothermal edifice (Lucky Strike) were assessed using delta C-13 and delta N-15 signatures from 14 hydrothermal species. The nutritional basis of B. azoricus was also investigated with delta S-34. Faunal samples and environmental data (temperature, pH, total dissolved sulfide, iron and copper concentrations) were collected from 12 different locations on the edifice. Chemical conditions varied between microhabitats, and were all correlated to temperature. Carbon and nitrogen isotopic results revealed the presence of two, apparently independent, trophic groups. The first was composed of symbiont-bearing fauna (B. azoricus and their associated polychaetes Branchipolynoe seepensis), while the second enclosed heterotrophic fauna (bacterivores, cletritivores, scavengers, predators). A majority of mussels displayed delta C-13 values ranging from -27 parts per thousand to -34 parts per thousand, supporting thiotrophy as the dominant nutritional pathway at Tour Eiffel, with methanotrophy and filter feeding emerging as secondary strategies. This result was corroborated by delta S-34 signatures. However, higher delta C-13 values in larger mussels suggested that, as they grow, B. azoricus mussels rely more heavily on their methanotrophic enclosymbionts. Significant spatial variability in isotopic signatures for single faunal species was observed at the scale of the edifice for three species (B. azoricus, B. seepensis, Amathys lutzi), and environmental conditions explained variation in isotopic signatures for one-third of the species. This confirms the hypothesis raised by several authors on the role of hydrothermal fluids on the trophic network at small spatial scales. We suggest that vent fluid characteristics, by influencing microbial production, are key factors in the variation of local carbon sources at vents
The study focuses on the question, how a seamount in the oligotrophic eastern Mediterranean affects the zooplankton community, as compared to the open water. Zooplankton samples were taken with 333 mm nets at two sites, the Rhodes Basin and the Anaximenes Mountain, in December 2006. The samples were sieved into size fractions, and the composition, biomass, abundance and stable isotope signatures were analysed. In general, biomass and abundance of zooplankton were low, reflecting the oligotrophic character of the eastern Mediterranean, but zooplankton standing stocks were higher at the Rhodes Basin than at the Anaximenes Mountain. Stable isotope signatures showed, at a generally low level, enrichment in zooplankton taxa along the food chain within the different pelagic zones and from the surface to the deep-sea, but no significant differences between Rhodes Basin and the seamount were evident in the food web structure. The zooplankton community in the Anaximenes Mountain region in the northern Levantine Basin seems not to be influenced by a local seamount effect, despite the difference in standing stocks between the seamount and the Rhodes Basin. This seems to be driven by larger-scale upwelling and downwelling structures of cyclones and anticyclones, dominating the circulation in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.