Accumulating data suggest that paraoxonase-1 (PON1) is a primary determinant of the antioxidant and anti-inflammatory capacities of high-density lipoproteins (HDLs). Variations in HDLs and PON1 have been shown to influence the functions of both. There is a wide spectrum of serum PON1 mass in humans, to which promoter polymorphisms make an important contribution. The present studies attempted to define: (i) the relevance in vivo of promoter polymorphisms by analysing haplotype structure; and (ii) molecular mechanisms implicated in promoter activity. Highly significant differences (P <0.0001) in serum mass and activity were observed as a function of haplotype sequence. Of three promoter polymorphisms (-107, -824 and -907), the -107 site was shown to be of predominant importance to serum PON1. Significant increases in serum PON1 mass and activities between haplotype subgroups could be explained by unit increases in the number of high-expresser variants of the -107 site (-107C) alone. No significant contribution was observed for the -824 and -907 sites. The coding-region Leu(55)-->Met (L55M) polymorphism made an independent contribution to serum PON1 mass, which may account for variations in serum PON1 mass and activity within haplotype subgroups defined by the -107 site. A molecular basis for the effect of the -107 polymorphism on serum PON1 was indicated by the greater affinity of the high-expresser variant (-107C) for hepatocyte nuclear extracts, indicating higher affinity for transcription factors. Competition studies with oligonucleotides representing the consensus (and mutated) sequence for Sp1, and the use of Sp1 antibodies, confirmed formation of complexes between the transcription factor and the PON1 promoter during incubation with nuclear extracts. The data underline the importance of the region containing the C(-107)T polymorphism for gene expression in vivo. Differences in the affinity of the -107C and -107T polymorphic fragments for nuclear extracts have been demonstrated, and coincide with their impact on gene expression. A potential role for the transcription factor Sp1 has been demonstrated, which is consistent with the disruption of an Sp1 recognition sequence by the -107 polymorphism.
Objective— The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. Approach and Results— We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective ( P <0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation ( P <0.001) and the levels of hemoglobin A1c in diabetic patients ( P <0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced ( P <0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c ( P <0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. Conclusions— Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature.
The worldwide increase in obesity and type 2 diabetes (T2D) represents a major health challenge. Chronically altered lipids induced by obesity further promote the development of T2D, and the accumulation of toxic lipid metabolites in serum and peripheral organs may contribute to the diabetic phenotype. Methods: To better understand the complex metabolic pattern of lean and obese T2D and non-T2D individuals, we analysed the lipid profile of human serum, skeletal muscle and visceral adipose tissue of two cohorts by systematic mass spectrometrybased lipid analysis. See editorial article: Sen P., Hyötyläinen T., and Orešič M. 2021. 1-Deoxyceramides-Key players in lipotoxicity and progression to type 2 diabetes? Acta Physiol (Oxf). e13635.2 of 20 | THOMAS HANNICH eT Al.
BackgroundNew evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects.ObjectiveThe aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations.Methods and ResultsThe impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo.ConclusionHDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Background: Despite substantial efforts, reliable preoperative diagnostic for human thyroid malignancies in case of cytologically indeterminate nodules is still missing, resulting in high number of unnecessary thyroidectomies. In an attempt to increase precision of existing preoperative diagnostics, we aimed at validating the panel of molecular biomarkers predictive for papillary thyroid carcinoma (PTC) in preoperative fine needle aspirate (FNA) samples.Methods: In this prospective study conducted in preoperative thyroid FNA from 44 thyroid nodules, expression levels of 11 molecular biomarkers previously validated on the postoperative samples of PTCs were measured by Cell-to-CT and QuantiGene Plex methods and correlated with final diagnosis. Results:The QuantiGene Plex resulted in reliable gene expression measurements for FNA and core-needle biopsy (CNB) samples, however this method was less sensitive than pre-amplification based Cell-to-CT.Measurements conducted on the same samples by the two methods significantly correlated for most of the genes. Expression levels of TIMP1, c-MET and ARNTL were upregulated in PTC nodules as compared to benign counterparts, supporting previous post-operative studies. Strong correlation was observed between these biomarker alterations in the same samples. Within the sub-group of 15 indeterminate nodules (Bethesda II-V), TIMP1 had 100% specificity and 83% sensitivity for PTC cases.Conclusions: Assessment of TIMP1, c-MET and core-clock gene ARNTL expression levels by QuantiGene Plex assay in FNA samples holds promise as an ancillary method to the cytological preoperative diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.