The objective of this study was to investigate the relationship between the concentrations of the different ketone bodies in milk and blood and to evaluate these concentrations for the detection of subclinical ketosis. A total of 60 multiparous cows were used. Concentrations of acetone, acetoacetate, and beta-hydroxybutyrate were analyzed quantitatively in blood and milk, and the Ketolac strip test was used for semiquantitative determination of beta-hydroxybutyrate in milk. Cows were defined subclinically ketotic when their concentration of blood beta-hydroxybutyrate was over 1200 micromol/L. High correlation coefficients were observed between blood acetone and blood acetoacetate, and between blood and milk acetone. On the contrary, concentrations of milk and blood beta-hydroxybutyrate were poorly correlated with the other concentrations of ketone bodies. The Ketolac strip test overestimated the concentrations of beta-hydroxybutyrate in milk. For the detection of subclinical ketosis, the best sensitivity-specificity combination was obtained with the determination of acetoacetate in blood or milk, with threshold concentrations of 125 and 50 micromol/L, respectively. Determination of beta-hydroxybutyrate in the milk via an enzymatic analysis or via the Ketolac strip test provided valuable results, with threshold concentrations of 70 and 100 micromol/L, respectively. The simplicity of use of the Ketolac strip test makes it a valuable way to investigate subclinical ketosis.
The effect of dietary lipids on the fatty acid (FA) profile of cows' milk fat is mainly dependent on digestive processes and mammary gland uptake and metabolism of FA. The objective of this study was to determine the separate effects of high arterial concentrations of 16:0, 18:0 and cis-18:1(n-9) on uptake, synthesis and 18:0 desaturation rate in the mammary gland of lactating dairy cows, via arterio-venous differences and mammary gland balance of FA. In a 4 x 4 Latin square, four lactating Holstein cows with cannula in the proximal duodenum were infused duodenally with a mixture providing daily 0 (C treatment) or 500 g FA with mainly 16:0 (P treatment), 18:0 (S treatment) or cis-18:1(n-9) (O treatment). Significantly higher arterial concentrations of infused FA in arterial plasma nonesterified FA and triglycerides (NETGFA) were observed with P and O treatments, but the effect of the S treatment was much lower. Arterio-venous differences of NETGFA increased with arterial concentrations. The number of synthesized FA in the mammary gland was not significantly affected by duodenal infusion of FA. Mean chain length was significantly reduced by P and O treatments, suggesting an effect of mammary gland uptake of long-chain FA on the termination process of mammary gland synthesis of FA. Across all treatments, 4:0 mammary gland balance increased linearly (r = 0.67, P = 0.004) with mammary gland FA uptake. Mammary gland desaturation of 18:0 to cis-18:1(n-9) averaged 52% and was not significantly affected by treatments, but was reduced by trans-18:1 mammary gland uptake. Uptake, synthesis and desaturation of FA by the mammary gland of dairy cows are affected by arterial concentrations of 16:0, 18:0 and cis-18:1(n-9).
Three experiments were conducted by in vitro incubations in ruminal fluid to investigate the effects of pH and amounts of linoleic and linolenic acids on the extent of their biohydrogenation, the proportions of conjugated linoleic acid (CLA) and trans-C18:1 as intermediates, and the ratio trans-10:trans-11 intermediates. The effects of pH and amount of linoleic acid were investigated in kinetic studies, and effects of the amount of linolenic acid were studied with 6-h incubations. With identical initial amounts of linoleic acid, its disappearance declined when the mean pH during incubation was under 6.0 compared with a mean pH over 6.5, and when the amount of linolenic acid increased from 10 to 180 mg/160-ml flask, suggesting an inhibition of the isomerization step of the biohydrogenation. Low pH decreased the ratio of trans-10:trans-11 intermediates. With initial amounts of linoleic acid increasing from 100 to 300 mg, the percentage of linoleic acid disappearance declined, but the amount that disappeared increased, without modification of the trans-10:trans-11 ratio, suggesting a maximal capacity of isomerization rather than an inhibition. Moreover, increasing initial linoleic acid resulted in high amounts of trans-C18:1 and an increase of C18:0 that was a linear function of time, suggesting a maximal capacity for the second reduction step of biohydrogenation. High amounts of initial linolenic acid did not affect the amounts of CLA, trans-C18:1, or the ratio trans-10:trans-11. Based on these experiments, a ruminal pH near neutrality with high amount of dietary linoleic acid should modulate the reactions of biohydrogenation in a way that supports CLA and trans-11C18:1 in the rumen.
Thirty lactating dairy cows were used in a 3 3 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.
Raw or extruded blends of ground canola seeds and canola meal were used to compare in vitro and in situ lag times and rates of disappearance due to ruminal biohydrogenation of unsaturated fatty acids. The in situ study resulted in higher lag times for biohydrogenation for polyunsaturated fatty acids and lower rates of biohydrogenation of unsaturated fatty acids than the in vitro study, so the in situ biohydrogenation of polyunsaturated fatty acids was not complete at 24 h of incubation. With both methods, rates of biohydrogenation of polyunsaturated fatty acids were higher than for cis-delta9C18:1. Extrusion did not affect the rate of biohydrogenation of cis-delta9C18:1, but resulted in higher rates of biohydrogenation of polyunsaturated fatty acids with higher proportions of trans intermediates of biohydrogenation at 4 h of incubation in vitro and at 8 h of incubation in situ. These results suggest that extrusion affects the isomerization of polyunsaturated fatty acids, rather than the hydrogenation steps. In conclusion, in vitro and in situ methods can both show differences of ruminal metabolism of unsaturated fatty acids due to processing, but the methods provide very different estimates of the rates of disappearance due to biohydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.