Asiatic acid, a triterpenoid derivative from Centella asiatica, has shown biological effects such as antioxidant, antiinflammatory, and protection against glutamate-or β-amyloid-induced neurotoxicity. We investigated the neuroprotective effect of asiatic acid in a mouse model of permanent cerebral ischemia. Various doses of asiatic acid (30, 75, or 165 mg/kg) were administered orally at 1 hr pre-and 3, 10, and 20 hr postischemia, and infarct volume and behavioral deficits were evaluated at day 1 or 7 postischemia. IgG (blood-brain barrier integrity) and cytochrome c (apoptosis) immunostaining was carried out at 24 hr postischemia. The effect of asiatic acid on stress-induced cytochrome c release was examined in isolated mitochondrial fractions. Furthermore, its effects on cell viability and mitochondrial membrane potential were studied in HT-22 cells exposed to oxygenglucose deprivation. Asiatic acid significantly reduced the infarct volume by 60% at day 1 and by 26% at day 7 postischemia and improved neurological outcome at 24 hr postischemia. Our studies also showed that the neuroprotective properties of asiatic acid might be mediated in part through decreased blood-brain barrier permeability and reduction in mitochondrial injury. The present study suggests that asiatic acid may be useful in the treatment of cerebral ischemia.Keywords infarct volume; blood-brain barrier; oxygen-glucose deprivation; mitochondria; apoptosis Although the molecular mechanisms involved in ischemic brain injury are not fully understood, much progress has been made in identifying some pathogenic pathways, such as inflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress, that might be involved in ischemic neuronal death (Durukan and Tatlisumak, 2007 Centella asiatica is a herbaceous plant that might also have medicinal value. It is being used in Ayurvedic preparations to improve learning and memory (Zheng and Qin, 2007). Published data suggest that the plant extract has nootropic effects (Rao et al., 2005), protects the brain from age-related oxidative damage (Subathra et al., 2005), and promotes nerve growth and neuronal dendritic arborization (Mohandas et al., 2006).Asiatic acid (AA), a pentacyclic triterpene derivative from Centella asiatica, has been shown to display neuroprotective properties both in vitro and in vivo (Bonfill et al., 2006). In cellular systems, AA was reported to offer protection against β-amyloid-induced cell death in the neuroblastoma B103 cell line (Mook-Jung et al., 1999;Jew et al., 2000). It also reduced H 2 O 2 -related cell death and decreased intracellular free radical concentration (Mook-Jung et al., 1999). Furthermore, AA derivatives were effective at rescuing primary rat cortical cells from glutamate-induced toxicity through activation of the cellular oxidative defense pathway (Lee et al., 2000).Because AA exhibits numerous pharmacological activities that might be beneficial to the ischemic brain, and given that no significant toxicity was observed following subcutaneous o...
The epigenetic machinery plays a pivotal role in the control of many of the body's key cellular functions. It modulates an array of pliable mechanisms that are readily and durably modified by intracellular or extracellular factors. In the fast-moving field of neuroepigenetics, it is emerging that faulty epigenetic gene regulation can have dramatic consequences on the developing CNS that can last a lifetime and perhaps even affect future generations. Mounting evidence suggests that environmental factors can impact the developing brain through these epigenetic mechanisms and this report reviews and examines the epigenetic effects of one of the most common neurotoxic pollutants of our environment, which is believed to have no safe level of exposure during human development: lead.
This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5 nm, 4 nm, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibited loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 µg/mL. The cells exposed to 1.5 nm AuNPs at this concentration did not form embryoid bodies but rather disintegrated into single cells within 48 hours. Cell death caused by 1.5 nm AuNPs also occurred in hESC-derived neural progenitor cells. None of the other nanoparticles exhibited toxic effects on the hESCs at concentrations as high as 10 µg/mL during a 19 day neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 µg/mL caused a dramatic decrease in global DNA methylation (5mC) and a corresponding increase in global DNA hydroxymethylation (5hmC) of the hESC’s DNA in only 24 hours. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells.
We report that the DNA methylation profile of a child’s neonatal whole blood can be significantly influenced by his or her mother’s neonatal blood lead levels (BLL). We recruited 35 mother-infant pairs in Detroit and measured the whole blood lead (Pb) levels and DNA methylation levels at over 450,000 loci from current blood and neonatal blood from both the mother and the child. We found that mothers with high neonatal BLL correlate with altered DNA methylation at 564 loci in their children’s neonatal blood. Our results suggest that Pb exposure during pregnancy affects the DNA methylation status of the fetal germ cells, which leads to altered DNA methylation in grandchildren’s neonatal dried blood spots. This is the first demonstration that an environmental exposure in pregnant mothers can have an epigenetic effect on the DNA methylation pattern in the grandchildren.
Exposure to lead (Pb) during childhood can result in learning disabilities and behavioral problems. Although described in animal models, whether Pb exposure also alters neuronal differentiation in the developing brains of exposed children is unknown. Here, we investigated the effects of physiologically relevant concentrations of Pb (from 0.4 to 1.9μM) on the capacity of human embryonic stem cells (hESCs) to progress to a neuronal fate. We found that neither acute nor chronic exposure to Pb prevented hESCs from generating neural progenitor cells (NPCs). NPCs derived from hESCs chronically exposed to 1.9μM Pb throughout the neural differentiation process generated 2.5 times more TUJ1-positive neurons than those derived from control hESCs. Pb exposure of hESCs during the stage of neural rosette formation resulted in a significant decrease in the expression levels of the neural marker genes PAX6 and MSI1. Furthermore, the resulting NPCs differentiated into neurons with shorter neurites and less branching than control neurons, as assessed by Sholl analysis. DNA methylation studies of control, acutely treated hESCs and NPCs derived from chronically exposed hESCs using the Illumina HumanMethylation450 BeadChip demonstrated that Pb exposure induced changes in the methylation status of genes involved in neurogenetic signaling pathways. In summary, our study shows that exposure to Pb subtly alters the neuronal differentiation of exposed hESCs and that these changes could be partly mediated by modifications in the DNA methylation status of genes crucial to brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.