Mesenchymal stem cells (MSCs) are studied as a cellular source for the treatment of various diseases. In this work, we isolated and cultivated murine bone marrow-derived MSCs. After a first observation of a solid tumor in a mouse injected with these cells, we systematically explored their chromosomal stability. We observed in all the cytogenetically analyzed cases gross chromosomal alterations every time the MSCs went through the senescence crisis while the lymphocytes from the same animals showed a normal chromosome count. This observation was confirmed in different mouse strains, with different culture protocols, and even in short-term cultures after a hematopoietic cell negative immunodepletion performed in order to accelerate the isolation procedure. Therefore, we conclude that murine MSCs display high chromosomal instability and can generate tumors, and that care must be taken before using them for the evaluation of MSC therapeutic potential.
Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA(+) cells being the main source of MMP13, a stromal mediator of cancer cell invasion.
Background aims. Mobilization of stem cells and progenitor cells from the bone marrow (BM) into the peripheral blood (PB) by granulocyte -colony-stimulating factor (G-CSF) is being investigated for cardiac regeneration in ischemic heart disease. However, hematopoietic (HPC), mesenchymal (MPC) and endothelial (EPC) progenitor mobilization have not been optimized and the effect of G-CSF on myocardial perfusion and cardiac function in a normal heart has never been studied. Methods . Normal mice were injected daily for 1 -10 days with subcutaneous recombinant human G-CSF. PB and BM were evaluated for HPC and EPC by fl ow cytometry and HPC and MPC by hematopoietic (CFU-GM) and mesenchymal (CFU-F) colony assays. Echocardiography, microSPECT imaging, cardiac catheterization and immunohistochemistry were performed in mice treated for 10 days. Results . HPC and CFU-GM in PB peaked after 2 days, CFU-F after 4 days and EPC after 3 days. Thereafter, while HPC temporally decreased before showing a second peak, EPC remained detectable only at low levels. In BM, hematopoietic stem cells (HSC) and CFU-GM did not increase much overall but peaked twice on days 2 and 7. EPC (peak on day 7) production increased in the BM, but CFU-F formation declined considerably after day 2. G-CSF enhanced myocardial perfusion and vascularization but impaired hemodynamic performance of the heart through apparently increased ventricular wall rigidity. Conclusions . G-CSF induces the mobilization of HPC, EPC and CFU-F progenitors in PB according to very different patterns, and has a signifi cant impact on perfusion and function of the normal heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.