The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate segregation of chromosomes into two daughter cells. BubR1, a key component of the SAC, also plays a role in the mitotic timing since depletion of BubR1 leads to accelerated mitosis. We previously found that mutation of the KEN1-box domain of Drosophila BubR1 (bubR1-KEN1 mutant) affects the binding of BubR1 to Cdc20, the activating co-factor of the APC/C, and does not accelerate the mitotic timing despite resulting in a defective SAC, which was unlike what was reported in mammalian cells. Here, we show that a mutation in a novel Drosophila short sequence (bubR1-KAN mutant) leads to an accelerated mitotic timing as well as SAC failure. Moreover, our data indicate that the level of Fzy, the Drosophila homolog of Cdc20, recruited to kinetochores is diminished in bubR1-KEN1 mutant cells and further diminished in bubR1-KAN mutant cells. Altogether, our data show that this newly identified Drosophila BubR1 KAN motif is required for a functional SAC and suggest that it may play an important role on Cdc20/Fzy kinetochore recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.