Mitochondrial compromise has been documented in infants born to women infected with the human immunodeficiency virus (HIV-1) who received nucleoside reverse transcriptase inhibitor (NRTI) therapy during pregnancy. To model these human exposures, we examined mitochondrial integrity at birth and 1 year in brain cortex and liver from offspring of retroviral-free Erythrocebus patas dams-administered human-equivalent NRTI doses for the last half (10 weeks) of gestation. Additional infants, followed for 1 year, were given the same drugs as their mothers for the first 6 weeks of life. Exposures included: no drug, Zidovudine (AZT), Lamivudine (3TC), AZT/3TC, AZT/Didanosine (ddI), and Stavudine (d4T)/3TC. In brain and liver, oxidative phosphorylation (OXPHOS) enzyme activities (complexes I, II, and IV) showed minimal differences between unexposed and NRTI-exposed offspring at both times. Brain and liver mitochondria from most NRTI-exposed patas, both at birth and 1 year of age, contained significant (p < 0.05) morphological damage observed by electron microscopy (EM), based on scoring of coded photomicrographs. Brain and liver mitochondrial DNA (mtDNA) levels in NRTI-exposed patas were depleted significantly in the 3TC and d4T/3TC groups at birth and were depleted significantly (p < 0.05) at 1 year in all NRTI-exposed groups. In 1-year-old infants exposed in utero to NRTIs, mtDNA depletion was 28.8-51.8% in brain and 37.4-56.5% in liver. These investigations suggest that some NRTI-exposed human infants may sustain similar mitochondrial compromise in brain and liver and should be followed long term for cognitive integrity and liver function.
Antiretroviral nucleoside reverse transcriptase inhibitors (NRTIs), given to human immunodeficiency virus-1-infected pregnant women to prevent vertical viral transmission, have caused mitochondrial dysfunction in some human infants. Here, we examined mitochondrial integrity in skeletal muscle from offspring of pregnant retroviral-free Erythrocebus patas dams administered human-equivalent NRTI doses for the last 10 weeks of gestation or for 10 weeks of gestation and 6 weeks after birth. Exposures included no drug, Zidovudine (AZT), Lamivudine (3TC), AZT/3TC, AZT/Didanosine (ddI), and Stavudine (d4T)/3TC. Offspring were examined at birth (n=3 per group) and 1 year (n=4 per group, not including 3TC alone). Circulating levels of creatine kinase were elevated at 1 year in the d4T/3TC-exposed group. Measurement of oxidative phosphorylation enzyme activities (complexes I, II, and IV) revealed minimal NRTI-induced changes at birth and at 1 year. Histochemistry for complex IV activity showed abnormal staining with activity depletion at birth and 1 year in groups exposed to AZT alone and to the 2-NRTI combinations. Electron microscopy of skeletal muscle at birth and 1 year of age showed mild to severe mitochondrial damage in all the NRTI-exposed groups, with 3TC inducing mild damage and the 2-NRTI combinations inducing extensive damage. At birth, mitochondrial DNA (mtDNA) was depleted by approximately 50% in groups exposed to AZT alone and the 2-NRTI combinations. At 1 year, the mtDNA levels had increased but remained significantly below normal. Therefore, skeletal muscle mitochondrial compromise occurs at birth and persists at 1 year of age (46 weeks after the last NRTI exposure) in perinatally exposed young monkeys, suggesting that similar events may occur in NRTI-exposed human infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.