Human S100A7 (psoriasin) is overexpressed in inflammatory diseases. The recently discovered, co-evolved hS100A15 is almost identical in sequence and up-regulated with hS100A7 during cutaneous inflammation. The functional role of these closely related proteins for inflammation remains undefined. By generating specific Abs, we demonstrate that hS100A7 and hS100A15 proteins are differentially expressed by specific cell types in the skin. Although highly homologous, both proteins are chemoattractants with distinct chemotactic activity for leukocyte subsets. We define RAGE (receptor for advanced glycation end products) as the hS100A7 receptor, whereas hS100A15 functions through a Gi protein-coupled receptor. hS100A7-RAGE binding, signaling, and chemotaxis are zinc-dependent in vitro, reflecting the previously reported zinc-mediated changes in the hS100A7 dimer structure. When combined, hS100A7 and hS100A15 potentiate inflammation in vivo. Thus, proinflammatory synergism in disease may be driven by the diverse biology of these almost identical proteins that have just recently evolved. The identified S100A7 interaction with RAGE may provide a novel therapeutic target for inflammation.
Although children born to HIV-infected (HIV+) women receiving antiretroviral therapy during pregnancy show virtually no adverse clinical effects at birth, the antiretroviral nucleoside analog drugs are known to damage nuclear and mitochondrial DNA. In this study, biomarkers of mitochondrial toxicity and genotoxicity have been examined in a well-characterized sample set consisting of infants born to HIV-uninfected (HIV-) mothers (n = 30), and HIV- infants (n = 20) born to HIV-infected (HIV+) mothers who received either no antiretroviral therapy (n = 10) or zidovudine (3'-azido-3'-deoxythymidine [AZT]) during pregnancy (n = 10). DNA from cord blood leukocytes and peripheral blood leukocytes taken at 1 and 2 years of age was examined for loss of mitochondrial DNA (mtDNA) and telomere integrity. Telomere length, a measure of nuclear DNA damage, was the same in all infants at birth and at age 1 year. The quantity of mtDNA was assessed relative to nuclear DNA using a polymerase chain reaction-based chemiluminescence detection (PCR-CID) method that determined mitochondrial D Loop gene copies relative to nuclear 18S RNA gene copies by comparison with a standard curve. MtDNA quantity was expressed as a ratio of gene copy numbers. In infants of uninfected mothers (AZT-/HIV-) at the three time points, the ratios were 442 to 515, whereas in infants of untreated AZT-/HIV+ mothers the ratios were 261 to 297, and in infants of AZT-treated (AZT+/HIV+) mothers the ratios were 146 to 203. At all three time points, differences between the AZT-/HIV- group and the two HIV+ groups were statistically significant (p <.05), and differences between the AZT-/HIV+ and AZT+/HIV+ groups were also statistically significant (p <.05), demonstrating that AZT exposure causes a persistent depletion of mtDNA. The study shows that children of HIV+ mothers are at risk for mitochondrial damage that is further increased in infants of mothers receiving AZT during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.