A method for deriving quantitative relationships between road slipperiness, traffic accident risk and winter road maintenance (WRM) activity is described. The method is also applied to data from an area in southern Sweden. If a specific type of road slipperiness represents a large accident risk despite high WRM activity it is important to increase public awareness during such periods. If the type of slipperiness represents a large accident risk but is accompanied by low WRM activity, it is also important to increase the WRM to reduce the accident risk. In the method, a road slipperiness classification, based on atmospheric processes, is used to classify the road conditions at the time an accident occurred. The road condition is classified either as non-slippery or as one out of 10 types of slipperiness. Data for the slipperiness classification are taken from the Swedish Road Weather Information System (RWIS). Results from this study show that the traffic accident risk was different for different types of road slipperiness. Highest accident risk was associated with road slipperiness due to rain or sleet on a frozen road surface. When accidents occurred in these situations, there was always high WRM activity. This indicates that, in order to reduce the accident rate during these situations, public awareness must be increased by providing information to drivers. The study also demonstrates the benefits of applying a standardized road slipperiness classification to all kinds of sources of road safety information, such as a RWIS, traffic accident reports and WRM reports. With a standardized and objective classification of the road conditions and digitally stored data, all evaluations are easily conducted. KEY WORDS: Road slipperiness · Traffic accidents · Winter road maintenanceResale or republication not permitted without written consent of the publisher CLIMATE RESEARCH
It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: how does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait. This article is part of the theme issue ‘Species' ranges in the face of changing environments (part I)’.
Figures 1-4, tables 1-3, Appendix A (including tables A1-A2), and Online Supplement (including figures S1-S12, tables S1-S13). Figures 1-4 are to print in color.
It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: How does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.