Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster.The acidic pH of the gonad (5.82 ± 0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na + -free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na + /H + exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5).
-To develop selection programs for the great scallop, artificial reproduction of the species needs to be improved by gamete cryobanking. Here, a set of four experiments was designed in order to define the basic elements of a cryopreservation protocol for scallop sperm, including extender composition (experiment 1), cryoprotectant selection (2), cooling rate (3), and assessment of the effects of sperm cryopreservation on sperm motility and fertilization capacity (4). Sperm was collected after serotonin injection (100 µl of a 10-mM solution) and frozen in 500-µl straws. For the first three experiments, the percentage of motile fresh sperm (80 ± 4%, mean ± SEM) was significantly higher than that observed for thawed sperm (11 ± 2%). During the first experiment, no significant difference of the percentage of motile thawed sperm was observed among the three saline extenders tested: seawater, calcium-free Hanks' balanced salt solution (Ca-free HBSS) and DCSB4 solution. However, a complementary experiment (2) showed that a significantly higher percentage of motile thawed sperm was recorded using DCSB4 than with Ca-free HBSS as an extender. During the third experiment, sperm motility was higher when using polyethylene glycol (10% PEG) as a cryoprotectant, than when using dimethyl sulphoxide, DMSO (10 and 20%), methanol (10%) and ethylene glycol (10% EG). A higher D-larval rate was obtained during the fourth experiment, using fresh sperm than thawed sperm, and using a 500:1 sperm-to-egg ratio compared with a 50:1 ratio. There is some evidence of inter-individual variations in sperm tolerance to cryopreservation. In conclusion, the highest survival of great scallop sperm after thawing was recorded using the following conditions: DCSB4 extender (1:3 vol/vol sperm to extender dilution), PEG cryoprotectant (10%) and straws maintained at 5.5 cm above liquid nitrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.