We decompose turbulent flows into two orthogonal parts: a coherent, inhomogeneous, non-Gaussian component and an incoherent, homogeneous, Gaussian component. The two components have different probability distributions and different correlations, hence different scaling laws. This separation into coherent vortices and incoherent background flow is done for each flow realization before averaging the results and calculating the next time step. To perform this decomposition we have developed a nonlinear scheme based on an objective threshold defined in terms of the wavelet coefficients of the vorticity. Results illustrate the efficiency of this coherent vortex extraction algorithm. As an example we show that in a 256 2 computation 0.7% of the modes correspond to the coherent vortices responsible for 99.2% of the energy and 94% of the enstrophy. We also present a detailed analysis of the nonlinear term, split into coherent and incoherent components, and compare it with the classical separation, e.g., used for large eddy simulation, into large scale and small scale components. We then propose a new method, called coherent vortex simulation ͑CVS͒, designed to compute and model two-dimensional turbulent flows using the previous wavelet decomposition at each time step. This method combines both deterministic and statistical approaches: ͑i͒ Since the coherent vortices are out of statistical equilibrium, they are computed deterministically in a wavelet basis which is remapped at each time step in order to follow their nonlinear motions. ͑ii͒ Since the incoherent background flow is homogeneous and in statistical equilibrium, the classical theory of homogeneous turbulence is valid there and we model statistically the effect of the incoherent background on the coherent vortices. To illustrate the CVS method we apply it to compute a two-dimensional turbulent mixing layer.
This Letter presents a wavelet technique for extracting coherent vortices from three-dimensional turbulent flows, which is applied to a homogeneous isotropic turbulent flow at resolution N = 256(3). The coherent flow is reconstructed from only 3%N wavelet coefficients that retain the vortex tubes, and 98.9% of the energy with the same k(-5/3) spectrum as the total flow. In contrast, the remaining 97%N wavelet coefficients correspond to the incoherent flow which is structureless, decorrelated, and whose effect can therefore be modeled statistically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.