A food web customarily describes the qualitative feeding relationships in a community. Descriptors have been used to extract ecologically meaningful information from such data, e.g., the proportion of top species (the proportion of taxa without consumers) or vulnerability (the average number of consumers per taxon). Analyses of collections of food webs based on these properties have revealed regularities that fostered the formulation of models of food‐web structure. However, it has been shown that most of these qualitative descriptors are highly sensitive to the varying levels of sampling effort used to document a food web. The principal problem is that webs described extensively include trophic links of highly uneven magnitude, with typically few strong/important links and a wealth of weak ones; with qualitative descriptors, the same weight is given to all trophic interactions. To overcome this problem, food webs should be described and analyzed quantitatively. Consequently, we propose here a suite of food‐web descriptors, which are built on information‐theory indices and take the magnitude of the trophic interactions into account. We define descriptors having a similar meaning as the classical qualitative indices. Two versions of each quantitative descriptor are proposed, one giving the same weight to each taxon, and one weighting each taxon by the total amount of its incoming and outgoing biomass flows. We use a published quantitative food web to exemplify the computation of the new descriptors, and discuss their potential and limitations.
Abstract. A food web customarily describes the qualitative feeding relationships in a community. Descriptors have been used to extract ecologically meaningful information from such data, e.g., the proportion of top species (the proportion of taxa without consumers) or vulnerability (the average number of consumers per taxon). Analyses of collections of food webs based on these properties have revealed regularities that fostered the formulation of models of food-web structure. However, it has been shown that most of these qualitative descriptors are highly sensitive to the varying levels of sampling effort used to document a food web. The principal problem is that webs described extensively include trophic links of highly uneven magnitude, with typically few strong/important links and a wealth of weak ones; with qualitative descriptors, the same weight is given to all trophic interactions. To overcome this problem, food webs should be described and analyzed quantitatively. Consequently, we propose here a suite of food-web descriptors, which are built on information-theory indices and take the magnitude of the trophic interactions into account. We define descriptors having a similar meaning as the classical qualitative indices. Two versions of each quantitative descriptor are proposed, one giving the same weight to each taxon, and one weighting each taxon by the total amount of its incoming and outgoing biomass flows. We use a published quantitative food web to exemplify the computation of the new descriptors, and discuss their potential and limitations.
Abstract. Food webs depict who eats whom in communities. Ecologists have examined statistical metrics and other properties of food webs, but mainly due to the uneven quality of the data, the results have proved controversial. The qualitative data on which those efforts rested treat trophic interactions as present or absent and disregard potentially huge variation in their magnitude, an approach similar to analyzing traffic without differentiating between highways and side roads. More appropriate data are now available and were used here to analyze the relationship between trophic complexity and diversity in 59 quantitative food webs from seven studies (14-202 species) based on recently developed quantitative descriptors. Our results shed new light on food-web structure. First, webs are much simpler when considered quantitatively, and link density exhibits scale invariance or weak dependence on food-web size. Second, the ''constant connectance'' hypothesis is not supported: connectance decreases with web size in both qualitative and quantitative data. Complexity has occupied a central role in the discussion of food-web stability, and we explore the implications for this debate. Our findings indicate that larger webs are more richly endowed with the weak trophic interactions that recent theories show to be responsible for food-web stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.