Ice–polished quartz veins, feldspar phenocrysts and quartzite layers were used as reference surfaces to assess the impact of Postglacial rock weathering in Lapland (68°N). Over 3200 measurements were carried out on roches moutonées and glaciofluvially scoured outcrops distributed within three study areas covering 8 km2. Inferred weathering rates demonstrate that 10,000 years of Holocene weathering did not significantly modify the geometry of Weichselian rock surfaces. However, rates of general surface lowering range from 1 to 25, depending on the rock type, with average values at 0.2 mm ka−1 for homogeneous crystalline rocks (irrespective of their acidity and grain size), 1 mm ka−1 for biotite–rich crystalline rocks, and 5 mm ka−1 for carbonate sedimentary rocks. Accelerated rates were recorded in weathering pits and along joints with values up to ten times higher than on the rest of the rock surface. Comparisons with cold and temperate areas suggest that solution rates of carbonate rocks are highly dependent on climate conditions, whilst granular disintegration of crystalline rocks operates at the same rate whatever the environment. It probably means that microgelivation is not efficient on ice–polished crystalline outcrops even under harsh climate conditions, and that granular disintegration proceeds under various climates from the same ubiquitous combination of biochemical processes. Last, the weathering state of Late–Weichselian roches moutonées can be usefully compared to that of Preglacial tors of the nearby Kiruna area.
Consideration of the mechanisms associated with the granular disintegration of rock has been limited by available data. In most instances, both the size of the transducer and the nature of the study have negated any applicability of the resulting data to the understanding of grain-to-grain separation within rock. The application of microthermocouples (≤0·15 mm diameter) and high-frequency logging (20 s intervals) at a taffoni site on southern Alexander Island and from a rock outcrop on Adelaide Island (Antarctica) provide new data pertaining to the thermal conditions, at the grain scale, of the rock surface. The results show that thermal changes (∆T/t) can be very high, with values of 22°C min −1 being recorded. Although available data indicate that there can be differences in frequency and magnitude of fluctuations as a function of aspect, all aspects experienced some large magnitude (≥2°C min −1 ) fluctuations. Further, in many instances, large thermal changes in more than one direction could occur within 1 min or in subsequent minutes. These data suggest that the surface grains experience rapidly changing stress fields that may, with time, effect fatigue at the grain boundaries; albedo differences between grains and the resulting thermal variations are thought to exacerbate this. The available data failed to show any indication of water freezing (an exotherm) and thus it is suggested that microgelivation may not play as large a role in granular breakdown as is often postulated for cold regions, and that in this dry, Antarctic region thermal stress may play a significant role.
Volumetric calculations of slope deposits, direct measurements of rockwall retreat and chronological control based on lichenometry provide a wide range of rockwall retreat rates in Svalbard (0-1580 mm ka −1 ) that appears consistent with previous evaluations from other Arctic areas. In northwest and central Spitsbergen (79°N), a triple-rate rockwall retreat is suggested for the last two millennia: very slow biogenic flaking (2 mm ka −1 ), moderate retreat due to frost shattering (100 ka −1 ) and rapid retreat associated with post-glacial stress relaxation (c. 1000 mm ka −1 ). Examination of the distribution of various processes indicates that the Holocene retreat of most rockwalls has not exceeded one or two metres. Bedrock conditions appear to be the main control on retreat rates. The massiveness of igneous and metamorphic outcrops, widespread in Arctic shield areas, largely accounts for the slowness of rockwall retreat, which on these lithologies is primarily due to chemical and biological processes. More rapid rates are usually associated with stress relaxation following glacial surges or with local frost susceptibility of bedrock, often where faulting has induced high joint density. At such sites, rockwall retreat rates are of the same order of magnitude as those reported from Alpine areas (1000-3000 mm ka −1 ) where both bedrock weakening due to tectonic stresses and the greater height of steep rockwalls account for the more rapid rockwall retreat rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.