Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum—land, rivers, sea—two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.
Current recycling technologies rarely achieve 100% pure plastic fractions from a single polymer type. Often, sorted bales marked as containing a single polymer type in fact contain small amounts of other polymers as contaminants. Inevitably, this will affect the properties of the recycled plastic. This work focuses on understanding the changes in tensile deformation mechanism and the related mechanical properties of the four dominant types of polyolefin (PO) (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP)), contaminated with three different non-polyolefin (NPO) polymers (polyamide-6 (PA-6), polyethylene terephthalate (PET), and polystyrene (PS)). Under the locally elevated stress state induced by the NPO phase, the weak interfacial adhesion typically provokes decohesion. The resulting microvoids, in turn, initiate shear yielding of the PO matrix. LLDPE, due to the linear structure and intercrystalline links, is well able to maintain high ductility when contaminated. LDPE shows deformation similar to the pure material, but with decreasing ductility as the amount of NPO increases. Addition of 20 wt% PA-6, PET, and PS causes a drop in strain at break of 79%, 63%, and 84%, respectively. The typical ductile necking of the high-crystalline HDPE and PP is strongly disturbed by the NPO phase, with a transition even to full brittle failure at high NPO concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.