Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.
Provision of a safe and secure supply of transfusible red blood cells (RBC) is a major global health challenge, and it has been proposed that manufactured RBC could help to alleviate the constraints of the current donor system. Several substantial challenges must be addressed for this approach to be feasible. At the most basic level, this relates to the large quantities of cells that are required: is there sufficient biological capacity, and is it possible to produce RBC using large-scale processes? While it has been demonstrated that, in principle, up to 5 units of RBC could be generated from a single donation of umbilical cord blood (UCB) hematopoietic stem cells, such yields are insufficient to supply demand and existing culture methods are unsuitable for large-scale manufacture. Given the capacity of the hematopoietic system in vivo, we reasoned that an optimized process should give rise to much larger quantities of RBC than previously reported. We successfully developed a robust ultra-high-yield RBC expansion process capable of producing over 500 units of RBC per UCB donation using fully defined culture medium. We obtained near-pure populations of reticulocytes with an enucleation frequency of >90%, mean cell hemoglobin content of 30.8 pg/cell, and mean cell volume of 133 fL. We also show that RBC can be efficiently produced in agitated bioreactor systems, demonstrating that no fundamental barriers exist to the manufacture of RBC using large-scale approaches.
Hematopoietic stem cells expressing intermediate levels of Kit have superior repopulation capacity after transplantation compared with those expressing high levels of Kit.
BackgroundThe family of cysteine rich proteins of the oocyst wall (COWPs) originally described in Cryptosporidium can also be found in Toxoplasma gondii (TgOWPs) localised to the oocyst wall as well. Genome sequence analysis of Eimeria suggests that these proteins may also exist in this genus and led us to the assumption that these proteins may also play a role in oocyst wall formation.MethodsIn this study, COWP-like encoding sequences had been identified in Eimeria nieschulzi. The predicted gene sequences were subsequently utilized in reporter gene assays to observe time of expression and localisation of the reporter protein in vivo.ResultsBoth investigated proteins, EnOWP2 and EnOWP6, were expressed during sporulation. The EnOWP2-promoter driven mCherry was found in the cytoplasm and the EnOWP2, respectively EnOWP6, fused to mCherry was initially observed in the extracytoplasmatic space between sporoblast and oocyst wall. This, so far unnamed compartment was designated as circumplasm. Later, the mCherry reporter co-localised with the sporocyst wall of the sporulated oocysts. This observation had been confirmed by confocal microscopy, excystation experiments and IFA. Transcript analysis revealed the intron-exon structure of these genes and confirmed the expression of EnOWP2 and EnOWP6 during sporogony.ConclusionsOur results allow us to assume a role, of both investigated EnOWP proteins, in the sporocyst wall formation of E. nieschulzi. Data mining and sequence comparisons to T. gondii and other Eimeria species allow us to hypothesise a conserved process within the coccidia. A role in oocyst wall formation had not been observed in E. nieschulzi.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-0982-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.