Pectate lyase 10A (Pel10A) enzyme from Pseudomonas cellulosa is composed of 649 residues and has a molecular mass of 68.5kDa. Sequence analysis revealed that Pel10A contained a signal peptide and two serine-rich linker sequences that separate three modules. Sequence similarity was seen between the 9.2kDa N-terminal module of Pel10A and family 2a carbohydrate-binding modules (CBMs). This N-terminal module of Pel10A was shown to encode an independently functional module with affinity to crystalline cellulose. A high sequence identity of 66% was seen between the 14.2kDa central module of Pel10A and the functionally uncharacterized central modules of the xylan-degrading enzymes endoxylanase 10B, arabinofuranosidase 62C and esterase 1D, also from P. cellulosa. The 35.8kDa C-terminal module of Pel10A was shown to have 30 and 36% identities with the family 10 pectate lyases from Azospirillum irakense and an alkaliphilic strain of Bacillus sp. strain KSM-P15, respectively. This His-tagged C-terminal module of the Pel10A was shown to encode an independent catalytic module (Pel10Acm). Pel10Acm was shown to cleave pectate and pectin in an endo-fashion and to have optimal activity at pH10 and in the presence of 2mM Ca2+. Highest enzyme activity was detected at 62°C. Pel10Acm was shown to be most active against pectate (i.e. polygalacturonic acid) with progressively less activity against 31, 67 and 89% esterified citrus pectins. These data suggest that Pel10A has a preference for sequences of non-esterified galacturonic acid residues. Significantly, Pel10A and the P. cellulosa rhamnogalacturonan lyase 11A, in the accompanying article [McKie, Vincken, Voragen, van den Broek, Stimson and Gilbert (2001) Biochem. J. 355, 167–177], are the first CBM-containing pectinases described to date.
Pectate lyase 10A (Pel10A) enzyme from Pseudomonas cellulosa is composed of 649 residues and has a molecular mass of 68.5 kDa. Sequence analysis revealed that Pel10A contained a signal peptide and two serine-rich linker sequences that separate three modules. Sequence similarity was seen between the 9.2 kDa N-terminal module of Pel10A and family 2a carbohydrate-binding modules (CBMs). This N-terminal module of Pel10A was shown to encode an independently functional module with affinity to crystalline cellulose. A high sequence identity of 66% was seen between the 14.2 kDa central module of Pel10A and the functionally uncharacterized central modules of the xylan-degrading enzymes endoxylanase 10B, arabinofuranosidase 62C and esterase 1D, also from P. cellulosa. The 35.8 kDa C-terminal module of Pel10A was shown to have 30 and 36% identities with the family 10 pectate lyases from Azospirillum irakense and an alkaliphilic strain of Bacillus sp. strain KSM-P15, respectively. This His-tagged C-terminal module of the Pel10A was shown to encode an independent catalytic module (Pel10Acm). Pel10Acm was shown to cleave pectate and pectin in an endo-fashion and to have optimal activity at pH 10 and in the presence of 2 mM Ca2+. Highest enzyme activity was detected at 62 degrees C. Pel10Acm was shown to be most active against pectate (i.e. polygalacturonic acid) with progressively less activity against 31, 67 and 89% esterified citrus pectins. These data suggest that Pel10A has a preference for sequences of non-esterified galacturonic acid residues. Significantly, Pel10A and the P. cellulosa rhamnogalacturonan lyase 11A, in the accompanying article [McKie, Vincken, Voragen, van den Broek, Stimson and Gilbert (2001) Biochem. J. 355, 167-177], are the first CBM-containing pectinases described to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.