Background: HPV testing is replacing cytology for cervical cancer screening because of greater sensitivity and superior reassurance following negative tests for the dozen HPV genotypes that cause cervical cancer. Management of women testing positive is unresolved. The need for identification of individual HPV genotypes for clinical use is debated. Also, it is unclear how long to observe persistent infections when precancer is not initially found. Methods: In the longitudinal NCI-Kaiser Permanente Northern California Persistence and Progression (PaP) Study, we observed the clinical outcomes (clearance, progression to CIN3+, or persistence without progression) of 11,573 HPV-positive women aged 30À65 yielding 14,158 type-specific infections. Findings: Risks of CIN3+ progression differed substantially by type, with HPV16 conveying uniquely elevated risk (26% of infections with seven-year CIN3+ risk of 22%). The other carcinogenic HPV types fell into 3 distinct seven-year CIN3+ risk groups: HPV18, 45 (13% of infections, risks >5%, with known elevated cancer risk); HPV31, 33, 35, 52, 58 (39%, risks >5%); and HPV39, 51, 56, 59, 68 (23%, risks <5%). In the absence of progression, HPV clearance rates were similar by type, with 80% of infections no longer detected within three years; persistence to seven years without progression was uncommon. The predictive value of abnormal cytology was most evident for prevalent CIN3+, but less evident in follow-up. A woman's age did not modify risk; rather it was the duration of persistence that was important.
BackgroundMillions of women have been vaccinated with one of two first-generation human papillomavirus (HPV) vaccines. Both vaccines remain in use and target two oncogenic types (HPVs 16 and 18); however, if these types naturally compete with others that are not targeted, type replacement may occur following reductions in the circulating prevalence of targeted types. To explore the potential for type replacement, we evaluated natural HPV type competition in unvaccinated females.MethodsValid HPV DNA typing information was available from five epidemiological studies conducted in Canada and Brazil (n = 14,685; enrollment across studies took place between1993 and 2010), which used similar consensus-primer PCR assays, capable of detecting up to 40 HPV types. A total of 38,088 cervicovaginal specimens were available for inclusion in our analyses evaluating HPV type-type interactions involving vaccine-targeted types (6, 11, 16, and 18), and infection with each of the other HPV types.ResultsAcross the studies, the average age of participants ranged from 21.0 to 43.7 years. HPV16 was the most common type (prevalence range: 1.0% to 13.8%), and in general HPV types were more likely to be detected as part of a multiple infection than as single infections. In our analyses focusing on each of the vaccine-targeted HPV types separately, many significant positive associations were observed (particularly involving HPV16); however, we did not observe any statistically significant negative associations.ConclusionsOur findings suggest that natural HPV type competition does not exist, and that type replacement is unlikely to occur in vaccinated populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.