The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (μ) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of ∼430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 × 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants.
Background-The etiology of cardiovascular disease (CVD) is multifactorial. Efforts to identify genes influencing CVD risk have met with limited success to date, likely due to the small effect sizes of common CVD risk alleles and the presence of gene by gene and gene by environment interactions.
Characterizing the genetic structure of worldwide populations is important for understanding human history and is essential to the design and analysis of genetic epidemiological studies. In this study, we examined genetic structure and distant relatedness and their effect on the extent of linkage disequilibrium (LD) and homozygosity in the founder population of Quebec (Canada). In the French Canadian founder population, such analysis can be performed using both genomic and genealogical data. We investigated genetic differences, extent of LD, and homozygosity in 140 individuals from seven sub-populations of Quebec characterized by different demographic histories reflecting complex founder events. Genetic findings from genome-wide single nucleotide polymorphism data were correlated with genealogical information on each of these sub-populations. Our genomic data showed significant population structure and relatedness present in the contemporary Quebec population, also reflected in LD and homozygosity levels. Our extended genealogical data corroborated these findings and indicated that this structure is consistent with the settlement patterns involving several founder events. This provides an independent and complementary validation of genomic-based studies of population structure. Combined genomic and genealogical data in the Quebec founder population provide insights into the effects of the interplay of two important sources of bias in genetic epidemiological studies, unrecognized genetic structure and cryptic relatedness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.