Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.
Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.
We consider a receiver-device-independent (RDI) approach to quantum key distribution. Specifically, we discuss protocols for a prepare-and-measure scenario and present a detailed security analysis. The sender's (Alice's) device is partially characterized, in the sense that we assume bounds on the overlaps of the prepared quantum states. The receiver's (Bob's) device requires no characterisation and can be represented as a black-box. Our protocols are therefore robust to any attack on Bob, such as blinding attacks. In particular, we show that a secret key can be established even when the quantum channel has arbitrarily low transmission by considering RDI protocols exploiting sufficiently many states. Finally, we discuss how the hypothesis of bounded overlaps can be naturally applied to practical devices.
Quantum theory allows for randomness generation in a device-independent setting, where no detailed description of the experimental device is required. Here we derive a general upper bound on the amount of randomness that can be certified in such a setting. Our bound applies to any black-box scenario, thus covering a wide range of scenarios from partially characterized to completely uncharacterized devices. Specifically, we prove that the number of random bits that can be certified is limited by the number of different input states that enter the measurement device. We show explicitly that our bound is tight in the simplest cases. More generally, our paper indicates that the prospects of certifying a large amount of randomness by using high-dimensional (or even continuous variable) systems will be extremely challenging in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.