SummaryGPIb is disulfide-linked to GPIbα to form GPIb, a platelet receptor for von Willebrand factor (vWF). GPIb is in turn non covalently linked to GPIX and GPV to form the GPIb/V/IX complex. Apart from its contribution to controlling surface expression of the complex, the exact function of GPIbβ is not well established due to a lack of suitable ligands or antibodies. The present report describes a monoclonal antibody (RAM.1) that labeled the 26 kDa GPIbβ subunit on western blots and coprecipitated the three subunits of the GPIb/IX complex from lysates of platelets and transfected CHO and K562 cells. RAM.1 bound to GPIbβ deleted of its intracellular domain whereas Gi27, directed against intracellular GPIbβ, did not. Using synthetic peptides, the RAM.1 epitope was mapped to a putative cysteine loop within the COOH-terminal leucine-rich flanking region. In functional assays, RAM.1 had no effect on platelet aggregation induced by ADP, collagen or thrombin, but inhibited ristocetin induced platelet agglutination and botrocetin induced vWF binding. RAM.1 inhibited adhesion of GPIb/V/IX transfected K562 cells to a vWF matrix under flow, increased their rolling velocity and decreased the resistance of cells to detachment at high shear. This study suggests a role of GPIbβ in modulating the adhesive properties of GPIb/V/IX and describes a useful tool to analyze the exact functions of GPIbβ.
The multisubunit leucine-rich glycoprotein (GP) Ib–IX–V complex mediates von Willebrand factor-dependent platelet adhesion at sites of blood-vessel injury. Molecular defects of this receptor are reported to cause the Bernard–Soulier haemorrhagic disorder. To gain insight into the mechanisms controlling expression of normal and defective receptors, we performed pulse–chase metabolic studies and detailed analysis of intracellular processing in GPIb-IX-transfected Chinese-hamster ovary cells. In the native complex, after early subunit association, sugars N-linked to the three subunits are trimmed and sialylated in the Golgi compartment and GPIbα undergoes extensive O-glycosylation. Surface biotinylation during chase demonstrated that only fully processed complexes reach the cell surface. Tunicamycin treatment revealed that early N-glycosylation is not required for O-glycosylation of GPIbα and surface expression of the complex. Biosynthetic studies were then performed on a Bernard–Soulier variant based on previous description of abnormal GPIbα size and decreased surface expression. The mutant complex associated normally, but displayed defective processing of its N-linked sugars and abnormal O-glycosylation of GPIbα. Confocal immunofluorescence microscopy revealed that the mutant complexes could reach the cell surface but also accumulated intracellularly, while use of compartment specific markers showed strong co-localization in the endoplasmic reticulum (ER) and ER-to-Golgi intermediate compartments (‘ERGIC’) and only slight labelling of the cis-Golgi. Blockade before the Golgi was confirmed by brefeldin A treatment, which restored O-glycosylation and processing of N-linked sugars. The present study has shown that transfer from the ER to the Golgi represents an important step for controlling post-translational processing and surface expression of normal GPIb-IX-V complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.