Although the application of nanotechnologies to atherosclerosis remains a young field, novel strategies are needed to address this public health issue. In this context, the magnetic resonance imaging (MRI) approach has been gradually investigated in order to enable image-guided treatments. In this contribution, we report a new approach based on nucleoside-lipids allowing the synthesis of solid lipid nanoparticles (SLN) loaded with iron oxide particles and therapeutic agents. The insertion of nucleoside-lipids allows the formation of stable SLNs loaded with prostacycline (PGI2) able to inhibit platelet aggregation. The new SLNs feature better relaxivity properties in comparison to the clinically used contrast agent Feridex, indicating that SLNs are suitable for image-guided therapy.
The noninvasive imaging of atherosclerotic plaques at an early stage of atherogenesis remains a major challenge for the evaluation of the pathologic state of patients at high risk of acute coronary syndromes. Recent studies have emphasized the importance of platelet-endothelial cell interactions in atherosclerosis-prone arteries at early stages, and the prominent role of P-selectin in the initial loose contact between platelets and diseased vessel walls. A specific MR contrast agent was developed here for the targeting, with high affinity, of P-selectin expressed in large amounts on activated platelets and endothelial cells. For this purpose, PEGylated dextran/iron oxide nanoparticles [PEG, poly(ethylene glycol)], named versatile ultrasmall superparamagnetic iron oxide (VUSPIO) particles, labeled with rhodamine were coupled to an anti-human P-selectin antibody (VH10). Flow cytometry and microscopy experiments on human activated platelets were highly correlated with MRI (performed at 4.7 and 0.2 T), with a 50% signal decrease in T(2) and T(1) values corresponding to the strong labeling of activated vs resting platelets. The number of 1000 VH10-VUSPIO nanoparticles attained per activated platelet appeared to be optimal for the detection of hypo- and hyper-signals in the platelet pellet on T(2) - and T(1) -weighted MRI. Furthermore, in vivo imaging of atherosclerotic plaques in ApoE mice at 4.7 T showed a spatial resolution adapted to the imaging of intimal thickening and a hypo-signal at 4.7 T, as a result of the accumulation of VH10-VUSPIO nanoparticles in the plaque. Our work provides support for the further assessment of the use of VH10-VUSPIO nanoparticles as a promising imaging modality able to identify the early stages of atherosclerosis with regard to the pertinence of both the target and the antibody-conjugated contrast agent used.
Current clinical assessment of atherosclerotic plagues is suboptimal. The authors in the article designed functionalized superparamagnetic iron oxide nanoparticles with TEG4, a recombinant human antibody, to target activated platelets. By using MRI, these nanoparticles can be utilized to study the process of atheroma pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.