Vapor deposition has been used to create glassy materials with extraordinary thermodynamic and kinetic stability and high density. For glasses prepared from indomethacin or 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene, stability is optimized when deposition occurs on substrates at a temperature of 50 K below the conventional glass transition temperature. We attribute the substantial improvement in thermodynamic and kinetic properties to enhanced mobility within a few nanometers of the glass surface during deposition. This technique provides an efficient means of producing glassy materials that are low on the energy landscape and could affect technologies such as amorphous pharmaceuticals.
Self-diffusion coefficients for the low molecular weight glass former o-terphenyl have been measured near Tg by isothermally desorbing thin film bilayers of deuterio and protio o-terphenyl in a vacuum chamber. We observe translational diffusion that is about 100 times faster at Tg + 3 K than the Stokes-Einstein prediction. Predictions from random first order transition theory and a dynamic facilitation approach are in reasonable agreement with our results; in these approaches, enhanced translational diffusion is associated with spatially heterogeneous dynamics. Self-diffusion controls crystallization in o-terphenyl for most of the supercooled liquid regime, but at temperatures below Tg + 10 K, the reported crystallization rate increases suddenly while the self-diffusion coefficient does not. This work and previous work on trisnaphthylbenzene both find a self-diffusion-controlled crystal growth regime and an enhancement in self-diffusion near Tg, suggesting that these phenomena are general characteristics of fragile low molecular weight glass formers. We discuss the width of the relaxation time distributions of o-terphenyl and trisnaphthylbenzene as they relate to the observation of enhanced translational diffusion.
A series of double-comb, disubstituted polysiloxane polymers have been prepared containing
oligoethylene oxide units, CH3(OCH2CH2)
n
(CH2)3−, in the side chains. These polymers were doped with
LiN(SO2CF3)2 (LiTFSI, 1), and conductivities of the polymer-salt complexes were determined as a function
of temperature and doping level. Conductivities increase with n up to n = 6 and then decrease. The
maximum conductivity of the polymer with n = 6 at 25 °C was 4.5 × 10-4, the highest value yet recorded
for a lithium-doped polymer electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.