Abstract-The great success of wearables and smartphone apps for provision of extensive physical workout instructions boosts a whole industry dealing with consumer oriented sensors and sports equipment. But with these opportunities there are also new challenges emerging. The unregulated distribution of instructions about ambitious exercises enables unexperienced users to undertake demanding workouts without professional supervision which may lead to suboptimal training success or even serious injuries. We believe, that automated supervision and realtime feedback during a workout may help to solve these issues.Therefore we introduce four fundamental steps for complex human motion assessment and present SensX, a sensor-based architecture for monitoring, recording, and analyzing complex and multi-dimensional motion chains. We provide the results of our preliminary study encompassing 8 different body weight exercises, 20 participants, and more than 9,220 recorded exercise repetitions. Furthermore, insights into SensXs classification capabilities and the impact of specific sensor configurations onto the analysis process are given.
Systems are becoming increasingly more adaptive, using techniques like machine learning to enhance their behavior on their own rather than only through human developers programming them. We analyze the impact the advent of these new techniques has on the discipline of rigorous software engineering, especially on the issue of quality assurance. To this end, we provide a general description of the processes related to machine learning and embed them into a formal framework for the analysis of adaptivity, recognizing that to test an adaptive system a new approach to adaptive testing is necessary. We introduce scenario coevolution as a design pattern describing how system and test can work as antagonists in the process of software evolution. While the general pattern applies to large-scale processes (including human developers further augmenting the system), we show all techniques on a smaller-scale example of an agent navigating a simple smart factory. We point out new aspects in software engineering for adaptive systems that may be tackled naturally using scenario coevolution. This work is a substantially extended take on Gabor et al. (International symposium on leveraging applications of formal methods, Springer, pp 137-154, 2018).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.