IntroductionDue to a lack of empirical data, the current understanding of the laryngeal mechanics in the passaggio regions (i.e., the fundamental frequency ranges where vocal registration events usually occur) of the female singing voice is still limited.Material and methodsIn this study the first and second passaggio regions of 10 professionally trained female classical soprano singers were analyzed. The sopranos performed pitch glides from A3 (ƒo = 220 Hz) to A4 (ƒo = 440 Hz) and from A4 (ƒo = 440 Hz) to A5 (ƒo = 880 Hz) on the vowel [iː]. Vocal fold vibration was assessed with trans-nasal high speed videoendoscopy at 20,000 fps, complemented by simultaneous electroglottographic (EGG) and acoustic recordings. Register breaks were perceptually rated by 12 voice experts. Voice stability was documented with the EGG-based sample entropy. Glottal opening and closing patterns during the passaggi were analyzed, supplemented with open quotient data extracted from the glottal area waveform.ResultsIn both the first and the second passaggio, variations of vocal fold vibration patterns were found. Four distinct patterns emerged: smooth transitions with either increasing or decreasing durations of glottal closure, abrupt register transitions, and intermediate loss of vocal fold contact. Audible register transitions (in both the first and second passaggi) generally coincided with higher sample entropy values and higher open quotient variance through the respective passaggi.ConclusionsNoteworthy vocal fold oscillatory registration events occur in both the first and the second passaggio even in professional sopranos. The respective transitions are hypothesized to be caused by either (a) a change of laryngeal biomechanical properties; or by (b) vocal tract resonance effects, constituting level 2 source-filter interactions.
Musical activities, especially singing and playing wind instruments, have been singled out as potentially high-risk activities for the transmission of SARS CoV-2, due to a higher rate of aerosol production and emission. Playing wind instruments can produce condensation, droplets of saliva, and aerosol particles, which hover and spread in the environmental air’s convectional flows and which can be potentially infectious. The aim of this study is to investigate the primary impulse dispersion of aerosols that takes place during the playing of different wind instruments as compared to breathing and to speaking. Nine professional musicians (3 trumpeters, 3 flautists and 3 clarinetists) from the Bavarian Symphony Orchestra performed the main theme from the 4th movement of Ludwig van Beethoven‘s 9th symphony in different pitches and loudness. The inhaled air volume was marked with small aerosol particles produced using a commercial e-cigarette. The expelled aerosol cloud was recorded by cameras from different perspectives. Afterwards, the dimensions and dynamics of the aerosol cloud were measured by segmenting the video footage at every time point. Overall, the flutes produced the largest dispersion at the end of the task, reaching maximum forward distances of 1.88 m. An expulsion of aerosol was observed in different directions: upwards and downwards at the mouthpiece, at the end of the instrument, and along the flute at the key plane. In comparison, the maximum impulse dispersions generated by the trumpets and clarinets were lower in frontal and lateral direction (1.2 m and 1.0 m towards the front, respectively). Also, the expulsion to the sides was lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.