[reaction: see text] We have developed a microarray-based strategy for detection of three major classes of hydrolytic enzymes on the basis of their catalytic activities. This enables the sensitive detection of proteins not merely by their bindings but rather by their enzymatic activities. This may provide a valuable tool for screening, identification, and characterization of new enzymes in a high-throughput fashion.
An integrated system of a silicon-based microfabricated polymerase chain reaction (microPCR) chamber and microfabricated electrophoretic glass chips have been developed. The PCR chamber was made of silicon and had aluminum heaters and temperature sensors integrated on the glass anodically bonded cover. Temperature uniformity in the reaction chamber was +/-0.3 degrees C using an improved novel "joint-heating" scheme. Thermal cycling was digitally controlled with a temperature accuracy of +/- 0.2 degrees C. Small operating volumes together with high thermal conductivity of silicon made the device well suited to rapid cycling; 16 s/cycle were demonstrated. For analysis of the PCR products, the chamber output was transferred to the glass microchip by pressure. Analysis time of PCR amplified genomic DNA was obtained in the microchip in less than 180 s. The analysis procedure employed was reproducible, simple and practical by using viscous sieving solutions of hydroxypropylmethylcellulose and dynamically coated microchip channels with poly(vinylpyrrolidone). DNA fragments that differ in size by 18 base pairs (bp) were resolved. Analysis of genomic male and female amplified DNA by microPCR was achieved in microchip, and application of the integrated microPCR-microchip for the identification of bird sex was tested. Genomic DNA samples from several bird species such as pigeon and chicken were analyzed. Hence, the system could be used as well to determine the sex of avian species.
This paper presents a micromachined thermal reactor. Silicon substrate remains unheated because of thermal isolation design, during thermal cycling of the reaction chamber. Employed side-heating concept has significantly improved in-chamber temperature uniformity. Finite-element-analysis is carried out to optimise the thermal performance. Experimental results have proved that the thermal reactor can easily be integrated with other non-thermal components. Integration of the device with other components or modules of miniaturised total analysis systems (pTAS) is very promising .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.