We report here the first example using an intein-mediated expression system to generate biotinylated proteins suitable for immobilization onto avidin-functionalized glass slides. With this novel array, proteins are site-specifically immobilized on the glass surface and are able to retain their native activity. The advantage of the avidin/biotin linkage over his-tag/Ni-NTA strategies for protein immobilization is highlighted by its ability to withstand a variety of chemical conditions, which makes this new protein array compatible with most biological assays.
Latest microarray-based technologies, including small molecule-, peptide-, protein- and cell-based arrays, and their applications in the field of proteomics are reviewed.
The massive throughput offered by array-based technologies can only be realized with the development of equally powerful strategies that offer reproducible consistency. The competence of arrays and efficacy of screening come under scrutiny, with most existing immobilization schemes that do not site-specifically ligate peptides on the arrays. Thus, it is crucial in array-based experiments to orientate peptides in an ordered and uniform fashion. Two new approaches were developed for the directed immobilization of peptides on a microarray, by exploiting measures involving native chemical ligation reactions as well as biotin-streptavidin interactions. This makes it possible to stably immobilize peptides in a consistent manner and in a predetermined orientation on the microarray. The first scheme employs glass slides that are functionalized with avidin for attachment of terminally biotinylated peptides. The second uses slides containing thioester moieties to ligate N-terminal cysteine containing peptides. The authors successfully immobilized peptides on chip using these strategies, and, in extending their method to the study of kinase activity on microarrays, they also developed a novel detection scheme that abrogates the dependence on traditional radioactivity-based kinase screening assays. This method employs fluorescently labeled antiphosphoserine and antiphosphotyrosine antibodies in assessing and monitoring kinase activity on arrays. The above methodologies provide for a fast and sensitive approach with which to conveniently assess kinase activity using peptide microarrays.
The postgenome era has led to a new frontier of proteomics that requires the development of protein microarray, which enables us to unravel the biological function of proteins in a massively parallel fashion. Several ways of immobilizing proteins onto surfaces have been reported, but many of these attachments are unspecific, resulting in the unfavorable orientation of the immobilized proteins. His6 tag has been used to site-specifically immobilize proteins onto nickel-coated slides, which presumably oriented proteins uniformly on the surface of the slide. However, the binding between Ni-NTA and His tag proteins is not strong, causing the immobilized proteins to dissociate from the slide even under simple wash conditions. The authors have developed a novel strategy of using an intein-mediated expression system to generate biotinylated proteins suitable for immobilization onto avidin-functionalized glass slides. Array-scan results not only show successful immobilization of proteins onto slides by antibody detection method but also full retention of biological activities of the immobilized proteins. The strong and specific interaction between biotin and avidin also permits the use of stringent incubation and washing conditions on the protein microchip, thus making it a highly robust method for array studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.