Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern.
We describe the development of a multilocus sequence typing (MLST) scheme for Corynebacterium diphtheriae, the causative agent of the potentially fatal upper respiratory disease diphtheria. Global changes in diphtheria epidemiology are highlighted by the recent epidemic in the former Soviet Union (FSU) and also by the emergence of nontoxigenic strains causing atypical disease. Although numerous techniques have been developed to characterize C. diphtheriae, their use is hindered by limited portability and, in some instances, poor reproducibility. One hundred fifty isolates from 18 countries and encompassing a period of 50 years were analyzed by multilocus sequence typing (MLST). Strain discrimination was in accordance with previous ribotyping data, and clonal complexes associated with disease outbreaks were clearly identified by MLST. The data produced are portable, reproducible, and unambiguous. The MLST scheme described provides a valuable tool for monitoring and characterizing endemic and epidemic C. diphtheriae strains. Furthermore, multilocus sequence analysis of the nucleotide data reveals two distinct lineages within the population of C. diphtheriae examined, one of which is composed exclusively of biotype belfanti isolates and the other of multiple biotypes.
SummaryThe acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis , the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10 ----3 after only 3 days of co-infection, and after 4 weeks 95% of coinfected fleas contained an average of 10 3 antibioticresistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar.
Yersinia pestis is the aetiologic agent of plague. Without appropriate treatment, the pathogen rapidly causes septicaemia, the terminal and fatal phase of the disease. In order to identify bacterial genes which are essential during septicaemic plague in humans, we performed a transcriptome analysis on the fully virulent Y. pestis CO92 strain grown in either decomplemented human plasma or Luria-Bertani medium, incubated at either 28 or 37 6C and harvested at either the mid-exponential or the stationary growth phase. Y. pestis genes involved in 12 iron-acquisition systems and one iron-storage system (bfr, bfd) were specifically induced in human plasma. Of these, the ybt and tonB genes (encoding the yersiniabactin siderophore virulence factor and the siderophore transporter, respectively) were induced at 37 6C, i.e. under conditions mimicking the mammalian environment. Growth in human plasma also upregulated genes involved in the synthesis of five fimbrial-like structures (including the Psa virulence factor), and in purine/ pyrimidine metabolism (the nrd genes). Genes known to play a role in the virulence of several bacterial pathogens (such as those encoding the Lpp lipoprotein and non-iron metal-uptake proteins) were induced in human plasma, during either the exponential or the stationary phase. Finally, 120 genes encoding proteins of unknown function were upregulated in human plasma. Eleven of these genes were specifically transcribed at 37 6C and may thus represent new virulence factors that are important during the septicaemic phase of human plague.
A gene, designated cry11B, encoding a 81,293-Da crystal protein of Bacillus thuringiensis subsp. jegathesan was cloned by using a gene-specific oligonucleotide probe. The sequence of the Cry11B protein, as deduced from the sequence of the cry11B gene, contains large regions of similarity with the Cry11A toxin (previously CryIVD) from B. thuringiensis subsp. israelensis. The Cry11B protein was immunologically related to both Cry11A and Cry4A proteins. The cry11B gene was expressed in a nontoxic strain of B. thuringiensis, in which Cry11B was produced in large amounts during sporulation and accumulated as inclusions. Purified Cry11B inclusions were highly toxic for mosquito larvae of the species Aedes aegypti, Culex pipiens, and Anopheles stephensi. The activity of Cry11B toxin was higher than that of Cry11A and similar to that of the native crystals from B. thuringiensis subsp. jegathesan, which contain at least seven polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.