Dendritic cell (DC)–mediated inflammation induced via TLRs is promoted by MAPK-activated protein kinase (MK)-2, a substrate of p38 MAPK. In this study we show an opposing role of MK2, by which it consolidates immune regulatory functions in DCs through modulation of p38, ERK1/2-MAPK, and STAT3 signaling. During primary TLR/p38 signaling, MK2 mediates the inhibition of p38 activation and positively cross-regulates ERK1/2 activity, leading to a reduction of IL-12 and IL-1α/β secretion. Consequently, MK2 impairs secondary autocrine IL-1α signaling in DCs, which further decreases the IL-1α/p38 but increases the anti-inflammatory IL-10/STAT3 signaling route. Therefore, the blockade of MK2 activity enables human and murine DCs to strengthen proinflammatory effector mechanisms by promoting IL-1α–mediated Th1 effector functions in vitro. Furthermore, MK2-deficient DCs trigger Th1 differentiation and Ag-specific cytotoxicity in vivo. Finally, wild-type mice immunized with LPS in the presence of an MK2 inhibitor strongly accumulate Th1 cells in their lymph nodes. These observations correlate with a severe clinical course in DC-specific MK2 knockout mice compared with wild-type littermates upon induction of experimental autoimmune encephalitis. Our data suggest that MK2 exerts a profound anti-inflammatory effect that prevents DCs from prolonging excessive Th1 effector T cell functions and autoimmunity.
Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.
Obesity causes insulin resistance via a chronic low-grade inflammation. This inflammation is characterized by elevated pro-inflammatory markers and macrophage accumulation in the adipose tissue (AT). AT inflammation is a key factor causing insulin resistance and thus type 2 diabetes, both linked to atherosclerotic cardiovascular disease. Osteopontin (OPN), a well-known inflammatory cytokine, is involved in obesity-linked complications including AT inflammation, insulin resistance, atherosclerosis and CVD. During inflammation, OPN is proteolytically cleaved by matrix metalloproteinases or thrombin leading to increased OPN activity. Therefore, OPN provides a new interesting target for immunological prevention and treatment of obesity-associated diseases. The aim of our study was to evaluate peptide-based vaccines against integrin binding sites of OPN and to examine whether these active immunotherapies are functional in reducing metabolic tissue inflammation, insulin resistance, and atherosclerosis in a cardio-metabolic (Ldlr mice) and a diet-induced obesity model (WT mice). However, atherosclerosis, insulin resistance and AT inflammation were not diminished after treatment with OPN-derived peptides in murine models. Lack of efficacy was based on a failure to induce antibodies capable to bind epitopes in the context of functional OPN protein. In conclusion, our data point to unexpected challenges in the immunotherapeutic targeting of adhesive motives, such as RGD containing sequences, on endogenous proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.