In this study, the photolytic and photocatalytic removal of the herbicide paraquat is investigated under UV-C (254 nm). For photocatalytic experiments, SiC foams were used with P25-TiO nanoparticles deposited by dip-coating. The foams were characterized by scanning electron microscopy and paraquat's degradation under UV-C photolysis or photocatalysis, followed by UV-vis spectroscopy, total organic carbon analyzer, LC-MS and ion chromatography. After 3 h of reactions by photolysis and photocatalysis, 4% and 91% of TOC removal were observed. An analysis of degradation by-products showed a similar degradation pathway with pyridinium ions observed by LC/MS and carboxylic acids (succinate, acetate, oxalate and formate) detected by ion chromatography. In conclusion, these two different photo-degradation processes are able to remove paraquat and produce similar by-products. However, the kinetics of degradation is rather slow during photolysis and it is recommended to combine the UV-C lightning with a TiO photocatalyst to improve the mineralization rate.
Photocatalysis is one of the most promising processes for treating air and water pollution. Innovative civil engineering materials for environmental depollution by photocatalysis have already been synthesized by incorporating TiO2 or ZnO nanoparticles in cement. This method suffers from two flaws: first, most of the NPs are incorporated into the cement and useless for photocatalysis; second, rain and wind could spread the potentially carcinogenic nanoparticles from the cement surface into nature. Thus, we propose the efficient synthesis of nontoxic and biocompatible ZnO nanostructures solely onto the surface of commercially available concrete and tiling pavements by a low-cost and low-temperature hydrothermal method. Our samples exhibited enhanced photocatalytic activity for degrading organic dyes in aqueous media, and dye molecules are commonly used in the pharmaceutical, food, and textile industries. Durability studies showed no loss of efficiency after four photocatalysis experiments. Such supported structures, which are easy to implement onto the varying surfaces of commercially available materials, are promising for integration into civil engineering surfaces for environmental depollution in our daily life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.