Patients with tienilic acid hepatitis exhibit autoantibodies that recognize unalkylated cytochrome P450 2C9 in humans but recognize 2C11 in rats. Our aim was to determine whether the immune reaction is also directed against neoantigens. Rats were treated with tienilic acid and hepatocytes were isolated. Immunoprecipitation, immunoblotting, and flow cytometry experiments were performed with an anti-tienilic acid or an anti-cytochrome P450 2C11 antibody. Cytochrome P450 2C11 was the main microsomal or plasma membrane protein that was alkylated by tienilic acid. Inhibitors of vesicular transport decreased flow cytometric recognition of both unalkylated and tienilic acid-alkylated cytochrome P450 2C11 on the plasma membrane of cultured hepatocytes. Tienilic acid hepatitis sera that were preadsorbed on microsomes from untreated rats (to remove autoantibodies), poorly recognized untreated hepatocytes in flow cytometry experiments, but better recognized tienilic acid-treated hepatocytes. This recognition was decreased by adsorption with tienilic acid or by preexposure to the anti-tienilic acid or the anti-cytochrome P450 2C11 antibody. We conclude that cytochrome P450 2C11 is alkylated by tienilic acid and follows a vesicular route to the plasma membrane. Tienilic acid hepatitis sera contain antibodies against this tienilic acid adduct, in addition to the previously described anticytochrome P450 autoantibodies. ( J. Clin. Invest. 1996. 98: 1471-1480.)
Tumor spheroids as well as multicellular tumor spheroids (MCTSs) are promising 3D in vitro tumor models for drug screening, drug design, drug targeting, drug toxicity, and validation of drug delivery methods. These models partly reflect the tridimensional architecture of tumors, their heterogeneity and their microenvironment, which can alter the intratumoral biodistribution, pharmacokinetics, and pharmacodynamics of drugs. The present review first focuses on current spheroid formation methods and then on in vitro investigations exploiting spheroids and MCTS for designing and validating acoustically mediated drug therapies. We discuss the limitations of the current studies and future perspectives. Various spheroid formation methods enable the easy and reproducible generation of spheroids and MCTSs. The development and assessment of acoustically mediated drug therapies have been mainly demonstrated in spheroids made up of tumor cells only. Despite the promising results obtained with these spheroids, the successful evaluation of these therapies will need to be addressed in more relevant 3D vascular MCTS models using MCTS-on-chip platforms. These MTCSs will be generated from patient-derived cancer cells and nontumor cells, such as fibroblasts, adipocytes, and immune cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.