Fractionation of soil organic carbon (SOC) is crucial for mechanistic understanding and modeling of soil organic matter decomposition and stabilization processes. It is often aimed at separating the bulk SOC into fractions with varying turnover rates, but a comprehensive comparison of methods to achieve this is lacking. In this study, a total of 20 different SOC fractionation methods were tested by participating laboratories for their suitability to isolate fractions with varying turnover rates, using agricultural soils from three experimental sites with vegetation from C3 to C4 22-36 years ago. Enrichment of C4-derived carbon was traced and used as a proxy for turnover rates in the fractions. Methods that apply a
International audienceRare earth elements (REE) total concentration and signature in soils are known to be impacted by successive soil forming processes. So it be used as probe of soil processes. However, few studies focus on their behavior in Podzols. Podzols result from the combination of two main pedogenic processes: (1) the strong weathering in the surface eluvial horizon; (2) the downward transfer of dissolved organic matter (OM) and mobile AI and Fe, and their accumulation in the illuvial horizon beneath. Iron oxides and OM are known to have strong affinities with REE, and to play an important role in transfer and immobilization of REE. In order to decipher the relative importance of Fe oxide and OM in REE fate during podzolization, and to investigate whether REE can trace Podzol formation, we study here the evolution of REE signatures along five pedons, aged from 120 to 530 years, in a Cambisol-Podzol chronosequence located in the Cox Bay of Vancouver Island. Our results show that the REE content is strongly correlated to the general loss of elements and mineral weathering. Furthermore, the accumulation of secondary OM, Al and Fe-bearing phases does not impact the REE signature of the bulk soil. Both our results and the ones available in the literature indicate that the release of REE induced by weathering and,subsequent leaching in percolating water are the main pathways determining the REE fate in Podzols. Furthermore, we show that REE can be released and mobilized in very short periods of time during podzolization (330 years). (C) 2016 Elsevier B.V. All rights reserved
Topography is one of the key factors controlling soil erosion and redistribution of pedogenic material along slope. Land cover change can have an accelerating or retarding impact on topographically-controlled soil erosion rates, depending on the type and intensity of land use and management. In this study, we investigated the combined effect of hillslope gradient and land cover change on soil redistribution and rejuvenation in a subtropical region where Atlantic rain forest was converted to agricultural land. We used a two versus two factorial design, and evaluated the effect of hillslope gradient (steep vs. gentle) and land cover (forest vs. cropland) on the spatial pattern of soil weathering degree along slope. In four soil toposequences, soil weathering indices (Total Reserve in Bases, Chemical Index of Alteration, clay content, iron oxide content) and mineralogical assemblages were used to express genetic and morphological differences among soil profiles. Our data showed that the spatial differentiation in chemical weathering degree along slope is strongly dependent on the hillslope gradient: while the gentle slopes show negligible differences in chemical weathering degree along slope, the steep slopes show clear spatial differences. Besides, there is an interaction effect between hillslope gradient and land cover. Forest conversion to cropland enhances erosion-driven soil redistribution with a marked effect on soil rejuvenation along steep slopes but no clear effect along gentle slopes. The comparative study based on four toposequences highlights that accelerated soil erosion after conversion of forests to cropland has further enhanced lateral soil fluxes and redistribution of topsoil material along steep slopes, and led to soil rejuvenation and exposure of less weathered soil material at the eroding sites.
Silicon (Si) is known to reduce the incidence of pathogens on many plants. Little information is available on the potential positive effects of Si on the susceptibility of banana (Musa acuminata) to pathogens. Root-rot fungi of the genus Cylindrocladium have been reported, along with endoparasitic nematodes, to be the causal agent of toppling disease and severe yield loss. The objective of this study was to determine the effects of Si supply on Cylindrocladium spathiphylli infection on banana. Plantlets inoculated by dipping the root system in a conidial suspension of the pathogen were grown on a desilicated ferralsol and amended, or not, with 2 mM of soluble Si under greenhouse conditions in Guadeloupe. The root lesion severity was evaluated using the image analysis program WinRHIZO 7, 14 and 21 days after inoculation. A reduction of about 50% of root necrosis was observed 14 days after inoculation for the Si-supplied plants compared with those not supplied with Si. The Si amendment also alleviated growth reduction caused by the pathogen. These results suggest that Si could have a positive effect on banana resistance to C. spathiphylli and provide an environmentally friendly alternative to pesticides for the integrated control of an important crop disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.