Two clones that encode variants (HCc1 and HCc2) of the major basic nuclear protein of the dinoflagellate Crypthecodinium cohnii, were identified by immunoscreening of a cDNA expression library. The first clone carries a full-length cDNA with an open reading frame (HCc1) encoding 113 amino acids. The cDNA from the second clone lacks some of the 5' end, and the coding sequence is only 102 residues. The two proteins display 77% sequence similarity and their NH2-ends are homologous to the NH2-peptide of the HCc protein determined by P. Rizzo. The amino acid composition, which confirms the basic nature of lysine-rich HCc proteins, differs markedly from other known DNA-binding proteins such as histones, HMGs or prokaryotic histone-like proteins. No convincing homology was found with other proteins. HCc antigens were localized on C. cohnii by immunofluorescence, and by electron microscopy (EM) with immunogold labelling. HCc proteins are mainly detected at the periphery of the permanently condensed chromosomes, where active chromatin is located, as well as in the nucleolar organizing region (NOR). This suggests that these basic, non-histone proteins, with a moderate affinity for DNA, are involved at some level in the regulation of gene expression.
Abstract. The usual conformation of DNA is a righthanded double helix (B-DNA). DNA with stretches of alternating purine-pyrimidine (G-C or A-T) can form a left-handed helix (Z-DNA). The transition B--'Z, facilitated by the presence of divalent cations, cytosine methylation, or constraints on DNA such as superhelicity may play a role in the regulation of gene expression and/or in DNA compaction (Zarling, D. A., D. J. Arndt-Jovin, M. Robert-Nicoud, L. P. Mclntosh, R. Tomae, and T. M. Jovin. 1984. J. Mol. Biol. 176:369--415). Divalent cations are also important in the structure of the quasi-permanently condensed chromosomes of dinoflagellate protists (Herzog, M., and M.-O. Soyer. 1983. Eur. J. Cell Biol. 30:33-41) which also have superhelicity in their DNA. The absence of histones in dinoflagellate chromosomes suggest that the search for Z-DNA sequences might be fruitful and could provide one indication of the physiological role of this particular DNA conformation.We report a complete immunofluorescent and immunogold analysis of the nuclei of the dinoflagellate Prorocentrum micans E. using monoclonal and polyclonal anti-B and anti-Z-DNA antibodies. Positive labeling was obtained with immunofluorescence using squash preparations and cryosections, both of which showed the intranuclear presence of the two DNA conformations. In ultrathin sections of aldehydeprefixed, osmium-fixed, and epoxy-embedded cells, we have localized B-DNA and Z-DNA either with single or double immunolabeling using IgG labeled with 5-and 7-rim gold particles, respectively. Chromosomal nucleofilaments of dividing or nondividing chromosomes, as seen in ultrathin sections in their archshaped'configuration, are abundantly labeled with anti-B-DNA antibody. Extrachromosomal anti-B-DNA labeling is also detected on the nucleoplasm that corresponds to DNA loops; we confirm the presence of these loops previously described external to the chromosomes (Soyer, M.-O., and O. K. Haapala. 1974. Chromosoma (Berl.). 47:179-192). B labeling is also visible in the nucleolus organizer region (NOR) and in the fibriUo-granular area (containing transcribing rDNA) of the nucleolus. Z-DNA was localized in limited areas inside the chromosomes, often at the periphery and near the segregation fork of dividing chromosomes. In the nucleolus, Z-DNA is observed only in the NOR area and never in the fibrillo-granular area. For both types of antibody experiments, controls using gold-labeled IgG without primary antibody were negative. A quantitative evaluation of the distribution of the gold-labeled IgG and a parametric test support the validity of these experiments. We also demonstrate the preservation of antibody activity on DNA molecules preincubated in OsO4 solutions. The role of the Z-DNA conformation as a possible site for unwinding and DNA processing in chromosomes that lack nucleosomes and that are permanently condensed is discussed. DNOFLAGELLATE protists are primitive eukaryotes, as demonstrated by ultrastructural, biochemical, and molecular biological studies (25,27...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.