We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼ 10 7 K) are perturbed by subsonic turbulence, warm (∼ 10 4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in Perseus cluster. The ensemble multiphase gas distributions (from UV to radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100 -200 km s −1 ) with mild line shift. On the other hand, pencil-beam detections (as HI absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shift up to several 100 km s −1 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[NII] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show the physically motivated criterion C ≡ t cool /t eddy ≈ 1 best traces the condensation extent region and presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic datasets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.
Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of systems (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts, where the temperature rises and density falls sharply, but are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) roll resulting from Kelvin-Helmholtz instabilities. If true, the morphology of this structure can be compared to simulations to put constraints on the initial average ratio of the thermal and magnetic pressure, β = p th /p B , throughout the overall cluster before the sloshing occurs, for which we find β = 200 to best match the observations. Simulations with a stronger magnetic field (β = 100) are disfavoured, as in these the large Kelvin-Helmholtz rolls do not form, while in simulations with a lower magnetic field (β = 500) the level of instabilities is much larger than is observed. We find that the bay structures in Centaurus and Abell 1795 may also be explained by such features of gas sloshing.
We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus cluster's brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. We present new observations of the low-velocity component of this nebula with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view (∼11'×11'), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc×55 kpc (3.8'×2.6') large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]λ 6583/Hα line ratio, suggesting a change in the ionization mechanism and source across the nebula, while the dispersion profile shows a general decrease with increasing distance from the AGN at up to ∼ 10 kpc. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus are also explored.
Supermassive black holes (SMBHs) are thought to provide energy that prevents catastrophic cooling in the centers of massive galaxies and galaxy clusters. However, it remains unclear how this "feedback" process operates. We use high-resolution optical data to study the kinematics of multi-phase filamentary structures by measuring the velocity structure function (VSF) of the filaments over a wide range of scales in the centers of three nearby galaxy clusters: Perseus, Abell 2597 and Virgo. We find that the motions of the filaments are turbulent in all three clusters studied. There is a clear correlation between features of the VSFs and the sizes of bubbles inflated by SMBH driven jets. Our study demonstrates that SMBHs are the main driver of turbulent gas motions in the centers of galaxy clusters and suggests that this turbulence is an important channel for coupling feedback to the environment. Our measured amplitude of turbulence is in good agreement with Hitomi Doppler line broadening measurement and X-ray surface brightness fluctuation analysis, suggesting that the motion of the cold filaments is wellcoupled to that of the hot gas. The smallest scales we probe are comparable to the mean free path in the intracluster medium (ICM). Our direct detection of turbulence on these scales provides the clearest evidence to date that isotropic viscosity is suppressed in the weakly-collisional, magnetized intracluster plasma.
We present a low-frequency view of the Perseus cluster with new observations from the Karl G. Jansky Very Large Array (JVLA) at 230-470 MHz. The data reveal a multitude of new structures associated with the mini-halo. The mini-halo seems to be influenced both by the AGN activity as well as by the sloshing motion of the cool core cluster's gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters. We present a detailed description of the data reduction and imaging process of the dataset. The depth and resolution of the observations allow us to conduct for the first time a detailed comparison of the mini-halo structure with the X-ray structure as seen in the Chandra X-ray images. The resulting image shows very clearly that the mini-halo emission is mostly contained behind the western cold front, similar to that predicted by simulations of gas sloshing in galaxy clusters, but fainter emission is also seen beyond, as if particles are leaking out. However, due to the proximity of the Perseus cluster, as well as the quality of the data at low radio frequencies and at X-ray wavelengths, we also find evidence of fine structure. This structure includes several radial radio filaments extending in different directions, a concave radio structure associated with the southern X-ray bay and sharp radio edges that correlate with X-ray edges. Mini-halos are therefore not simply diffuse, uniform radio sources, but rather have a rich variety of complex structures. These results illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies, as well as the necessity to obtain deeper, higher-fidelity radio images of mini-halos in clusters to further understand their origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.