The deletion 18p syndrome is one of the most common chromosome abnormalities. The medical problems are mental and postnatal growth retardation, and sometimes malformations of the heart and brain. The individuals have some typical features, which might be easy to overlook and which are: ptosis, strabismus, hypertelorism, broad flat nose, micrognathia, big and low set ears. The aims of present study were to clinically and molecularly characterize the syndrome further in seven subjects with de novo 18p deletions and to perform genotype-phenotype correlation. All seven subjects had terminal deletions and no interstitial deletion was observed with subtelomeric FISH analyses. To define the extent of the 18p deletions and the parental origin of the deletion microsatellite- and FISH analyses were performed on genomic DNA and on lymphoblastoid cell lines of the study participants. Totally 19 chromosomes, 18 specific polymorphic microsatellite markers, and 5 BAC clones were used. The results revealed that the deletions were located in the centromeric region at 18p11.1 in four of the seven subjects. In the remaining three the breakpoints were located distal to 18p11.1 (18p11.21-p11.22). Four of the individuals had a paternal and three a maternal origin of the deletion. Genotype-phenotype correlation of the seven subjects suggests a correlation between the extent of the deleted region and the mental development. All the four children with a deletion in the centromeric region at 18p11.1 had a mental retardation (MR). Two of the three children with a more distal breakpoint (distal 18p11.21) had a normal mental development and one had a border-line mental retardation. There might be a critical region for the mental retardation located between 18p11.1 and 18p11.21. The children with a breakpoint at 18p11.1 had all a broad face, which was observed in only one of those with a more distal breakpoint, otherwise no genotype-phenotype correlation of the features was observed.
Taken together, our results indicate that the molecular and clinical overlap between CFC and NS is more complex than previously suggested and that the syndromes might even represent allelic disorders. Furthermore, we suggest that the diagnosis should be refined to, for example, NS-PTPN11-associated or CFC-BRAF-associated syndromes after the genetic defect has been established, as this may affect the prognosis and treatment of the patients.
Noise-induced hearing loss (NIHL) is one of the most important occupational diseases and, after presbyacusis, the most frequent cause of hearing loss. NIHL is a complex disease caused by an interaction between environmental and genetic factors. The various environmental factors involved in NIHL have been relatively extensively studied. On the other hand, little research has been performed on the genetic factors responsible for NIHL. To test whether the variation in genes involved in coupling of cells and potassium recycling in the inner ear might partly explain the variability in susceptibility to noise, we performed a case-control association study using 35 SNPs selected in 10 candidate genes on a total of 218 samples selected from a population of 1,261 Swedish male noise-exposed workers. We have obtained significant differences between susceptible and resistant individuals for the allele, genotype, and haplotype frequencies for three SNPs of the KCNE1 gene, and for the allele frequencies for one SNP of KCNQ1 and one SNP of KCNQ4. Patch-clamp experiments in high K+-concentrations using a Chinese hamster ovary (CHO) cell model were performed to investigate the possibility that the KCNE1-p.85N variant (NT_011512.10:g.21483550G>A; NP_00210.2:p.Asp85Asn) was causative for high noise susceptibility. The normalized current density generated by KCNQ1/KCNE1-p.85N channels, thus containing the susceptibility variant, differed significantly from that from wild-type channels. Furthermore, the midpoint potential of KCNQ1/KCNE1-p.85N channels (i.e., the voltage at which 50% of the channels are open) differed from that of wild-type channels. Further genetic and physiological studies will be necessary to confirm these findings.
Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine–cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification‐free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No‐Amp Targeted sequencing) in combination with single molecule, real‐time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification‐free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No‐Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR‐based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.