BackgroundHomeostatic turnover of the extracellular matrix conditions the structure and function of the healthy lung. In lung transplantation, long-term management remains limited by chronic lung allograft dysfunction, an umbrella term used for a heterogeneous entity ultimately associated with pathological airway and/or parenchyma remodeling.ObjectiveThis study assessed whether the local cross-talk between the pulmonary microbiota and host cells is a key determinant in the control of lower airway remodeling posttransplantation.MethodsMicrobiota DNA and host total RNA were isolated from 189 bronchoalveolar lavages obtained from 116 patients post lung transplantation. Expression of a set of 11 genes encoding either matrix components or factors involved in matrix synthesis or degradation (anabolic and catabolic remodeling, respectively) was quantified by real-time quantitative PCR. Microbiota composition was characterized using 16S ribosomal RNA gene sequencing and culture.ResultsWe identified 4 host gene expression profiles, among which catabolic remodeling, associated with high expression of metallopeptidase-7, -9, and -12, diverged from anabolic remodeling linked to maximal thrombospondin and platelet-derived growth factor D expression. While catabolic remodeling aligned with a microbiota dominated by proinflammatory bacteria (eg, Staphylococcus, Pseudomonas, and Corynebacterium), anabolic remodeling was linked to typical members of the healthy steady state (eg, Prevotella, Streptococcus, and Veillonella). Mechanistic assays provided direct evidence that these bacteria can impact host macrophage-fibroblast activation and matrix deposition.ConclusionsHost-microbes interplay potentially determines remodeling activities in the transplanted lung, highlighting new therapeutic opportunities to ultimately improve long-term lung transplant outcome.
Serial electrocardiogram recordings and troponin I assessments may be proposed for initial screening in high-risk trauma patients to detect anatomical cardiac injuries through the time course of circulating protein. Troponin I release does not have a prognosis value in trauma patients.
Free inflation of the tracheal tube cuff, controlled only by the palpation of the pilot balloon, is not reliable and results in extremely variable (and sometimes very high) initial cuff pressures in children. In addition, nitrous oxide anesthesia may result in cuff hyperinflation requiring numerous gas removals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.