Free terpenoids and both free and bound polyfunctional thiols were investigated in five selected dual-purpose hop cultivars. Surprisingly, the dual-purpose Sorachi Ace variety was found to contain higher amounts of farnesene (2101 mg/kg) than aromatic hops such as Saaz but only traces of 3-methylbutylisobutyrate, a compound that usually distinguishes all bitter varieties. All five cultivars investigated here showed an exceptional citrus-like potential explained by either monoterpenic alcohols or polyfunctional thiols. Among the monoterpenic alcohols, β-citronellol at concentrations above 7 mg/kg distinguished Amarillo, Citra, Hallertau Blanc, Mosaic, and Sorachi Ace from Nelson Sauvin and Tomahawk, two previously investigated dual-purpose hops, while linalool (312 mg/kg) and geraniol (211 mg/kg) remained good discriminating compounds for Nelson Sauvin and Tomahawk, respectively. Regarding polyfunctional thiols, higher amounts of 3-sulfanylhexyl acetate (27 μg/kg) characterized the Citra variety. Free 4-sulfanyl-4-methylpentan-2-one proved discriminant for Sorachi Ace, while the bound form is predominant in Nelson Sauvin. On the other hand, an S-conjugate of 3-sulfanylhexan-1-ol was found in Sorachi Ace at levels not far from those previously reported for Cascade, although the free form was undetected here. Both free and bound grapefruit-like 3-sulfanyl-4-methylpentan-1-ol (never evidenced before the present work) emerged as discriminating compounds for the Hallertau Blanc variety. The apotryptophanase assay also allowed us to evidence for the first time an S-conjugate of 2-sulfanylethan-1-ol.
Monovarietal dry-hopped beers were produced with the dual-purpose hop cultivars Amarillo, Hallertau Blanc, and Mosaic. The grapefruit-like 3-sulfanyl-4-methylpentan-1-ol was found in all three beers at concentrations much higher than expected on the basis of the free thiol content in hop. Even cysteinylated precursors proved unable to explain our results. As observed in wine, the occurrence of S-glutathione precursors was therefore suspected in hop. The analytical standards of S-3-(4-methyl-1-hydroxypentyl)glutathione, never described before, and of S-3-(1-hydroxyhexyl)glutathione, previously evidenced in grapes, were chemically synthesized. An optimized extraction of glutathionylated precursors was then applied to Amarillo, Hallertau Blanc, and Mosaic hop samples. HPLC-ESI(+)MS/MS revealed, for the first time, the occurrence of S-3-(1-hydroxyhexyl)glutathione and S-3-(4-methyl-1-hydroxypentyl)glutathione in hop, at levels well above those reported for their cysteinylated counterparts. S-3-(1-Hydroxyhexyl)glutathione emerged in all cases as the major adduct in hop. Yet, although 3-sulfanylhexan-1-ol seems relatively ubiquitous in free, cysteinylated, and glutathionylated forms, the glutathione adduct of 3-sulfanyl-4-methylpentan-1-ol, never evidenced in other plants up to now, was found only in the Hallertau Blanc variety.
Despite the key role of flavan-3-ols in many foods, very little is yet known concerning the modification of their chemical structures through food processes. Degradation of model media containing (-)-epicatechin and procyanidin B2, either separately or together, was monitored by RP-HPLC-DAD-ESI(-)-MS/MS. Medium composition (aqueous or lipidic) and temperature (60 and 90 °C) were studied. In aqueous medium at 60 °C, (-)-epicatechin was mainly epimerized to (-)-catechin, but it was also oxidized to "chemical" dimers, a "chemical" trimer, and dehydrodi(epi)catechin A. Unlike oxidation, epimerization was enhanced at 90 °C. In lipidic medium, epimerization proved slow but degradation was faster. Procyanidin B2 likewise proved able to epimerize, especially at 90 °C and in aqueous medium. At high temperature only, the interflavan linkage was cleaved, yielding the same compounds as those found in the monomer-containing model medium. Oxidation to procyanidin A2 was also evidenced. With little epimerization and slow oxidation even at 90 °C, procyanidin B2 proved more stable in lipidic medium. Synergy was also observed: in the presence of the monomer, the dimer degradation rate increased 2-fold at 60 °C. This work states for the first time the presence of newly formed flavan-3-ol oligomers in processed cocoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.