Background: Polybrominated diphenyl ethers (PBDEs) are chemical additives used as flame retardants in commercial products. PBDEs are bioaccumulative and persistent and have been linked to several adverse health outcomes.Objectives: This study leverages an ongoing pregnancy cohort to measure PBDEs and PBDE metabolites in serum collected from an understudied population of pregnant women late in their third trimester. A secondary objective was to determine whether the PBDEs or their metabolites were associated with maternal thyroid hormones.Methods: One hundred forty pregnant women > 34 weeks into their pregnancy were recruited into this study between 2008 and 2010. Blood samples were collected during a routine prenatal clinic visit. Serum was analyzed for a suite of PBDEs, three phenolic metabolites (i.e., containing an –OH moiety), and five thyroid hormones.Results: PBDEs were detected in all samples and ranged from 3.6 to 694 ng/g lipid. Two hydroxylated BDE congeners (4´-OH-BDE 49 and 6-OH-BDE 47) were detected in > 67% of the samples. BDEs 47, 99, and 100 were significantly and positively associated with free and total thyroxine (T4) levels and with total triiodothyronine levels above the normal range. Associations between T4 and PBDEs remained after controlling for smoking status, maternal age, race, gestational age, and parity.Conclusions: PBDEs and OH-BDEs are prevalent in this cohort, and levels are similar to those in the general population. Given their long half-lives, PBDEs may be affecting thyroid regulation throughout pregnancy. Further research is warranted to determine mechanisms through which PBDEs affect thyroid hormone levels in developing fetuses and newborn babies.
This paper assesses whether the Clean Air Act and its Amendments have been equally successful in ensuring the right to healthful air quality in both advantaged and disadvantaged communities in the United States. Using a method to rank air quality established by the American Lung Association in its 2009 State of the Air report along with EPA air quality data, we assess the environmental justice dimensions of air pollution exposure and access to air quality information in the United States. We focus on the race, age, and poverty demographics of communities with differing levels of ozone and particulate matter exposure, as well as communities with and without air quality information. Focusing on PM2.5 and ozone, we find that within areas covered by the monitoring networks, non-Hispanic blacks are consistently overrepresented in communities with the poorest air quality. The results for older and younger age as well as poverty vary by the pollution metric under consideration. Rural areas are typically outside the bounds of air quality monitoring networks leaving large segments of the population without information about their ambient air quality. These results suggest that substantial areas of the United States lack monitoring data, and among areas where monitoring data are available, low income and minority communities tend to experience higher ambient pollution levels.
Cadmium (Cd) is prevalent in the environment yet understudied as a developmental toxicant. Cd partially crosses the placental barrier from mother to fetus and is linked to detrimental effects in newborns. Here we examine the relationship between levels of Cd during pregnancy and 5-methylcytosine (5mC) levels in leukocyte DNA collected from 17 mother-newborn pairs. The methylation of cytosines is an epigenetic mechanism known to impact transcriptional signaling and influence health endpoints. A methylated cytosine-guanine (CpG) island recovery assay was used to assess over 4.6 million sites spanning 16,421 CpG islands. Exposure to Cd was classified for each mother-newborn pair according to maternal blood levels and compared with levels of cotinine. Subsets of genes were identified that showed altered DNA methylation levels in their promoter regions in fetal DNA associated with levels of Cd (n = 61), cotinine (n = 366), or both (n = 30). Likewise, in maternal DNA, differentially methylated genes were identified that were associated with Cd (n = 92) or cotinine (n = 134) levels. While the gene sets were largely distinct between maternal and fetal DNA, functional similarities at the biological pathway level were identified including an enrichment of genes that encode for proteins that control transcriptional regulation and apoptosis. Furthermore, conserved DNA motifs with sequence similarity to specific transcription factor binding sites were identified within the CpG islands of the gene sets. This study provides evidence for distinct patterns of DNA methylation or "footprints" in fetal and maternal DNA associated with exposure to Cd.
BackgroundChildhood lead poisoning remains a critical environmental health concern. Low-level lead exposure has been linked to decreased performance on standardized IQ tests for school-aged children.ObjectiveIn this study we sought to determine whether blood lead levels in early childhood are related to educational achievement in early elementary school as measured by performance on end-of-grade (EOG) testing.MethodsEducational testing data for 4th-grade students from the 2000–2004 North Carolina Education Research Data Center were linked to blood lead surveillance data for seven counties in North Carolina and then analyzed using exploratory and multivariate statistical methods.ResultsThe discernible impact of blood lead levels on EOG testing is demonstrated for early childhood blood lead levels as low as 2 μg/dL. A blood lead level of 5 μg/dL is associated with a decline in EOG reading (and mathematics) scores that is roughly equal to 15% (14%) of the interquartile range, and this impact is very significant in comparison with the effects of covariates typically considered profoundly influential on educational outcomes. Early childhood lead exposures appear to have more impact on performance on the reading than on the mathematics portions of the tests.ConclusionsOur emphasis on population-level analyses of children who are roughly the same age linked to previous (rather than contemporaneous) blood lead levels using achievement (rather than aptitude) outcome complements the important work in this area by previous researchers. Our results suggest that the relationship between blood lead levels and cognitive outcomes are robust across outcome measures and at low levels of lead exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.